FreshPatents.com Logo
stats FreshPatents Stats
12 views for this patent on FreshPatents.com
2014: 4 views
2013: 8 views
Updated: October 13 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Compounds for enzyme inhibition

last patentdownload pdfdownload imgimage previewnext patent


20120277146 patent thumbnailZoom

Compounds for enzyme inhibition


Peptide-based compounds including heteroatom-containing, three-membered rings efficiently and selectively inhibit specific activities of N-terminal nucleophile (Ntn) hydrolases. The activities of those Ntn having multiple activities can be differentially inhibited by the compounds described. For example, the chymotrypsin-like activity of the 20S proteasome may be selectively inhibited with the inventive compounds. The peptide-based compounds include at least three peptide units, an epoxide or aziridine, and functionalization at the N-terminus. Among other therapeutic utilities, the peptide-based compounds are expected to display anti-inflammatory properties and inhibition of cell proliferation.
Related Terms: Proteasome

Browse recent Onyx Pharmaceuticals Inc. patents - South San Francisco, CA, US
Inventors: Mark S. Smyth, Guy J. Laidig, Ronald T. Borchardt, Barry A. Bunin, Craig M. Crews, John H. Musser
USPTO Applicaton #: #20120277146 - Class: 514 38 (USPTO) - 11/01/12 - Class 514 


view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120277146, Compounds for enzyme inhibition.

last patentpdficondownload pdfimage previewnext patent

TECHNICAL FIELD

This invention relates to compounds and methods for enzyme inhibition. In particular, the invention relates to therapeutic methods based on enzyme inhibition.

BACKGROUND OF THE INVENTION

In eukaryotes, protein degradation is predominately mediated through the ubiquitin pathway in which proteins targeted for destruction are ligated to the 76 amino acid polypeptide ubiquitin. Once targeted, ubiquitinated proteins then serve as substrates for the 26S proteasome, a multicatalytic protease, which cleaves proteins into short peptides through the action of its three major proteolytic activities. While having a general function in intracellular protein turnover, proteasome-mediated degradation also plays a key role in many processes such as major histocompatibility complex (MHC) class I presentation, apoptosis, cell division, and NF-κB activation.

The 20S proteasome is a 700 kDa cylindrical-shaped multicatalytic protease complex comprised of 28 subunits organized into four rings that plays important roles in cell growth regulation, major histocompatibility complex class I presentation, apoptosis, antigen processing, NF-κB activation, and transduction of pro-inflammatory signals. In yeast and other eukaryotes, 7 different a subunits form the outer rings and 7 different g subunits comprise the inner rings. The a subunits serve as binding sites for the 19S (PA700) and 11S (PA28) regulatory complexes, as well as a physical barrier for the inner proteolytic chamber formed by the two β subunit rings. Thus, in vivo, the proteasome is believed to exist as a 26S particle (“the 26S proteasome”). In vivo experiments have shown that inhibition of the 20S form of the proteasome can be readily correlated to inhibition of 26S proteasome. Cleavage of amino-terminal prosequences of β subunits during particle formation expose amino-terminal threonine residues, which serve as the catalytic nucleophiles. The subunits responsible for catalytic activity in proteasome thus possess an amino terminal nucleophilic residue, and these subunits belong to the family of N-terminal nucleophile (Ntn) hydrolases (where the nucleophilic N-terminal residue is, for example, Cys, Ser, Thr, and other nucleophilic moieties). This family includes, for example, penicillin G acylase (PGA), penicillin V acylase (PVA), glutamine PRPP amidotransferase (GAT), and bacterial glycosylasparaginase. In addition to the ubiquitously expressed β subunits, higher vertebrates also possess three γ-interferon-inducible β subunits (LMP7, LMP2 and MECL1), which replace their normal counterparts, X, Y and Z respectively, thus altering the catalytic activities of the proteasome. Through the use of different peptide substrates, three major proteolytic activities have been defined for the eukaryote 20S proteasome: chymotrypsin-like activity (CT-L), which cleaves after large hydrophobic residues; trypsin-like activity (T-L), which cleaves after basic residues; and peptidylglutamyl peptide hydrolyzing activity (PGPH), which cleaves after acidic residues. Two additional less characterized activities have also been ascribed to the proteasome: BrAAP activity, which cleaves after branched-chain amino acids; and SNAAP activity, which cleaves after small neutral amino acids. The major proteasome proteolytic activities appear to be contributed by different catalytic sites, since inhibitors, point mutations in β subunits and the exchange of γ interferon-inducing β subunits alter these activities to various degrees.

There are several examples of small molecules which have been used to inhibit proteasome activity; however, these compounds generally lack the specificity, stability, or potency necessary to explore and exploit the roles of the proteasome at the cellular and molecular level. Therefore, the synthesis of small molecule inhibitor(s) with increased site specificity, improved stability and solubility, and increased potency are needed to allow the exploration of the roles of the proteasome at the cellular and molecular level.

SUMMARY

OF THE INVENTION

The invention relates to analogs and prodrugs of classes of molecules known as peptide α′,β′-epoxides and peptide α′,β′-aziridines. The parent molecules are understood to bind efficiently, irreversibly and selectively to N-terminal nucleophile (Ntn) hydrolases, and can specifically inhibit particular activities of enzymes having multiple catalytic activity.

Once thought merely to dispose of denatured and misfolded proteins, the proteasome is now recognized as constituting proteolytic machinery that regulates the levels of diverse intracellular proteins through their degradation in a signal-dependent manner. Hence, there is great interest in identifying reagents that can specifically perturb the activities of the proteasome and other Ntn hydrolases and thereby be used as probes to study the role of these enzymes in biological processes. Analogs and prodrugs for compounds that target the Ntn hydrolases are herein described, synthesized, and investigated. Peptide epoxides and peptide aziridines that can potently, selectively, and irreversibly inhibit particular proteasome activities are disclosed and claimed.

Unlike several other peptide-based inhibitors, the peptide epoxides and peptide aziridines described herein are not expected to substantially inhibit non-proteasomal proteases such as trypsin, chymotrypsin, cathepsin B, papain, and calpain at concentrations up to 50 μM. At higher concentrations, inhibition may be observed, but would be expected to be competitive and not irreversible, if the inhibitor merely competes with the substrate. The novel peptide epoxides and peptide aziridines are also expected to inhibit NF-κB activation and to stabilize p53 levels in cell culture. Moreover, these compounds would be expected to have anti-inflammatory activity. Thus, these compounds can be unique molecular probes, which have the versatility to explore Ntn enzyme function in normal biological and pathological processes.

In one aspect, the invention provides inhibitor analogs and prodrugs comprising a heteroatom-containing three-membered ring. These inhibitors can inhibit catalytic activity of N-terminal nucleophile hydrolase enzymes (for example, the 20S proteasome, or the 26S proteasome) when said inhibitor is present at concentrations below about 50 μM. Regarding the 20S proteasome, particular hydrolase inhibitors inhibit chymotrypsin-like activity of the 20S proteasome when the inhibitor is present at concentrations below about 5 μM, and does not inhibit trypsin-like activity or PGPH activity of the 20S proteasome when present at concentrations below about 5 μM. The hydrolase inhibitor may be, for example, a peptide α′,β′-epoxy ketone or α′,β′-aziridine ketone, and the peptide may be a tetrapeptide. The tetrapeptide may include branched or unbranched side chains such as hydrogen, C1-6alkyl, C1-6hydroxyalkyl, C1-6alkoxyalkyl, aryl, C1-6aralkyl, C1-6alkylamide, C1-6alkylamine, C1-6-carboxylic acid, C1-6carboxyl ester, C1-6alkylthiol, or C1-6alkylthioether, for example isobutyl, 1-naphthyl, phenylmethyl, and 2-phenylethyl. The α′-carbon of the α′, β′-epoxy ketone or α′,β′-aziridine ketone may be a chiral carbon atom, such as an (R) or β configured carbon, as these are defined herein.

In another aspect, the invention provides pharmaceutical compositions, including a pharmaceutically acceptable carrier and a pharmaceutically effective amount of the hydrolase inhibitor analog or prodrug, which ameliorates the effects of neurodegenerative disease (such as Alzheimer\'s disease), muscle-wasting diseases, cancer, chronic infectious diseases, fever, muscle disuse, denervation, nerve injury, fasting, and immune-related conditions, among others.

In another aspect, the invention provides anti-inflammatory compositions.

In another aspect, the invention provides methods for the following: inhibiting or reducing HIV infection in a subject; affecting the level of viral gene expression in a subject; altering the variety of antigenic peptides produced by the proteasome in an organism; determining whether a cellular, developmental, or physiological process or output in an organism is regulated by the proteolytic activity of a particular Ntn hydrolase; treating Alzheimer\'s disease in a subject; reducing the rate of muscle protein degradation in a cell; reducing the rate of intracellular protein degradation in a cell; reducing the rate of p53 protein degradation in a cell; inhibiting the growth of p53-related cancers in a subject; inhibiting antigen presentation in a cell; suppressing the immune system of a subject; inhibiting IκB-α degradation in an organism; reducing the content of NF-κB in a cell, muscle, organ or subject; affecting cyclin-dependent eukaryotic cell cycles; treating proliferative disease in a subject; affecting proteasome-dependent regulation of oncoproteins in a cell; treating cancer growth in a subject; treating p53-related apoptosis in a subject; and screening proteins processed by N-terminal nucleophile hydrolases in a cell. Each of these methods involves administering or contacting an effective amount of a composition comprising the hydrolase inhibitors disclosed herein, to a subject, a cell, a tissue, an organ, or an organism.

Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.

DETAILED DESCRIPTION

OF THE INVENTION

The invention involves compounds useful as enzyme inhibitors. These compounds are generally useful to inhibit enzymes having a nucleophilic group at the N-terminus. For example, activities of enzymes or enzyme subunits having N-terminal amino acids with nucleophiles in their side chains, such as threonine, serine, or cysteine can be successfully inhibited by the enzyme inhibitors described herein. Activities of enzymes or enzyme subunits having non-amino acid nucleophilic groups at their N-termini, such as, for example, protecting groups or carbohydrates, can also be successfully inhibited by the enzyme inhibitors described herein.

While not bound by any particular theory of operation, it is believed that such N-terminal nucleophiles of Ntn form covalent adducts with the epoxide functional group of the enzyme inhibitors described herein. For example, in the β5/Pre2 subunit of 20S proteasome, the N-terminal threonine is believed to irreversibly form a morpholino or piperazino adduct upon reaction with a peptide epoxide or aziridine such as those described below. Such adduct formation would involve ring-opening cleavage of the epoxide or aziridine.

In embodiments including such groups bonded to a′ carbons, the stereochemistry of the α′-carbon (that carbon forming a part of the epoxide or aziridine ring) can be (R) or (S). The invention is based, in part, on the structure-function information disclosed herein, which suggests the following preferred stereochemical relationships. Note that a preferred compound may have a number of stereocenters having the indicated up-down (or β-α, where β as drawn herein is above the plane of the page) or (R) —(S) relationship (that is, it is not required that every stereocenter in the compound conform to the preferences stated). In some preferred embodiments, the stereochemistry of the α′ carbon is (R), that is, the X atom is β, or above the plane of the molecule.

Regarding the stereochemistry, the Cahn-Ingold-Prelog rules for determining absolute stereochemistry are followed. These rules are described, for example, in Organic Chemistry, Fox and Whitesell; Jones and Bartlett Publishers, Boston, Mass. (1994); Section 5-6, pp 177-178, which section is hereby incorporated by reference. Peptides can have a repeating backbone structure with side chains extending from the backbone units. Generally, each backbone unit has a side chain associated with it, although in some cases, the side chain is a hydrogen atom. In other embodiments, not every backbone unit has an associated side chain. Peptides useful in peptide epoxides or peptide aziridines have two or more backbone units. In some embodiments useful for inhibiting chymotrypsin-like (CT-L) activity of the proteasome, between four and eight backbone units are present, and in some preferred embodiments for CT-L inhibition, between four and six backbone units are present.

The side chains extending from the backbone units can include natural aliphatic or aromatic amino acid side chains, such as hydrogen (glycine), methyl (alanine), isopropyl (valine), sec-butyl (isoleucine), isobutyl (leucine), phenylmethyl (phenylalanine), and the side chain constituting the amino acid proline. The side chains can also be other branched or unbranched aliphatic or aromatic groups such as ethyl, n-propyl, n-butyl, t-butyl, and aryl substituted derivatives such as 1-phenylethyl, 2-phenylethyl, (1-naphthyl)methyl, (2-naphthyl)methyl, 1-(1-naphthyl)ethyl, 1-(2-naphthypethyl, 2-(1-naphthyl)ethyl, 2-(2-naphthyl)ethyl, and similar compounds. The aryl groups can be further substituted with branched or unbranched C1-6alkyl groups, or substituted alkyl groups, acetyl and the like, or further aryl groups, or substituted aryl groups, such as benzoyl and the like. Heteroaryl groups can also be used as side chain substituents. Heteroaryl groups include nitrogen-, oxygen-, and sulfur-containing aryl groups such as thienyl, benzothienyl, naphthothienyl, thianthrenyl, furyl, pyranyl, isobenzofuranyl, chromenyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, indolyl, purinyl, quinolyl, and the like.

In some embodiments, polar or charged residues can be introduced into the peptide epoxides or peptide aziridines. For example, naturally occurring amino acids such as hydroxy-containing (Thr, Tyr, Ser) or sulfur-containing (Met, Cys) can be introduced, as well as non-essential amino acids, for example, taurine, carnitine, citrulline, cystine, ornithine, norleucine and others. Non-naturally occurring side chain substituents with charged or polar moieties can also be included, such as, for example, C1-6alkyl chains or C6-12aryl groups with one or more hydroxy, short chain alkoxy, sulfide, thio, carboxyl, ester, phospho, amido or amino groups, or such substituents substituted with one or more halogen atoms. In some preferred embodiments, there is at least one aryl group present in a side chain of the peptide moiety.

In some embodiments, the backbone units are amide units [—NH—CHR—C(═O)—], in which R is the side chain. Such a designation does not exclude the naturally occurring amino acid proline, or other non-naturally occurring cyclic secondary amino acids, which will be recognized by those of skill in the art.

In other embodiments, the backbone units are N-alkylated amide units (for example, N-methyl and the like), olefinic analogs (in which one or more amide bonds are replaced by olefinic bonds), tetrazole analogs (in which a tetrazole ring imposes a cis-configuration on the backbone), or combinations of such backbone linkages. In still other embodiments, the amino acid α-carbon is modified by α-alkyl substitution, for example, aminoisobutyric acid. In some further embodiments, side chains are locally modified, for example, by ΔE or Δz dehydro modification, in which a double bond is present between the α and β atoms of the side chain, or for example by ΔE or Δz cyclopropyl modification, in which a cyclopropyl group is present between the α and β atoms of the side chain. In still further embodiments employing amino acid groups, D-amino acids can be used. Further embodiments can include side chain-to-backbone cyclization, disulfide bond formation, lactam formation, azo linkage, and other modifications discussed in “Peptides and Mimics, Design of Conformationally Constrained” by Hruby and Boteju, in “Molecular Biology and Biotechnology: A Comprehensive Desk Reference”, ed. Robert A. Meyers, VCH Publishers (1995), pp. 658-664, which is hereby incorporated by reference.

In certain embodiments, the subject compounds are analogs or prodrugs of the compounds disclosed in U.S. application Ser. No. 09/569,748, the contents of which are hereby incorporated by reference in their entirety. Suitable enzyme inhibitor analogs or prodrugs may have a structure of formula (I) or a pharmaceutically acceptable salt thereof,

wherein each A is independently selected from C═O, C═S, and SO2, preferably C═O; Or A is optionally a covalent bond when adjacent to an occurrence of Z; L is absent or is selected from C═O, C═S, and SO2, preferably L is absent or C═O; M is absent or is C1-12alkyl, preferably C1-8alkyl; Q is absent or is selected from O, NH, and N—C1-6alkyl, preferably Q is absent, O, or NH, most preferably Q is absent or O; X is selected from O, NH, and N—C1-6alkyl, preferably O; Y is absent or is selected from O, NH, N—C1-6alkyl, S, SO, SO2, CHOR10, and CHCO2R10; each Z is independently selected from O, S, NH, and N—C1-6alkyl, preferably O; or Z is optionally a covalent bond when adjacent to an occurrence of A; R1, R2, R3, and R4 are each independently selected from C1-6alkyl, C1-6hydroxyalkyl, C1-6alkoxyalkyl, aryl, and C1-6aralkyl, any of which is optionally substituted with one or more of amide, amine, carboxylic acid (or a salt thereof), ester (including C1-5 alkyl ester and aryl ester), thiol, or thioether substituents; R5 is N(R6)LQR7; R6, R12, R13, and R14 are independently selected from hydrogen, OH, C1-6alkyl, and a group of formula IV; preferably, R6 is selected from hydrogen, OH, and C1-6alkyl, and R12, R13, and R14 are independently selected from hydrogen and C1-6alkyl, preferably hydrogen;

R7 is selected from hydrogen, C1-6alkyl, C1-6alkenyl, C1-6alkynyl, aryl, C1-6aralkyl, heteroaryl, C1-6heteroaralkyl, R8ZAZ—C1-8alkyl-, R11Z—C1-8alkyl-, (R8O)(R9O)P(═O)O—C1-8alkyl-ZAZ—C1-8alkyl-, R8ZAZ—C1-8alkyl-ZAZ—C1-8alkyl-, heterocyclylMZAZ—C1-8alkyl-, (R8O)(R9O)P(═O)O—C1-8alkyl-,)(R10)2N—C1-12alkyl-, (R10)3N+—C1-12alkyl-, heterocyclylM-, carbocyclylM-, R11SO2C1-8alkyl-, and R11SO2NH; preferably C1-6alkyl, C1-6alkenyl, C1-6alkynyl, aryl, C1-6aralkyl, heteroaryl, C1-6heteroaralkyl, R8ZA-C1-8alkyl-, R11Z—C1-8alkyl-, (R8O)(R9O)P(═O)O—C1-8alkyl-ZAZ—C1-8alkyl-, (R8O)(R9O)P(═O)O—C1-8alkyl-Z—C1-8alkyl-, R8ZA-C1-8alkyl-ZAZ—C1-8alkyl-, heterocyclylMZAZ—C1-8 alkyl-, (R8O)(R9O)P(═O)O—C1-8alkyl-,)(R10)2N—C1-8alkyl-, (R10)3N+—C1-8alkyl-, heterocyclylM-, carbocyclylM-, R11SO2C1-8alkyl-, and R11SO2NH, wherein each occurrence of Z and A is independently other than a covalent bond; or R6 and R7 together are C1-6alkyl-Y—C1-6alkyl, C1-6alkyl-ZAZ—C1-6allyl, ZAZ—C1-6alkyl-ZAZ—C1-6alkyl, ZAZ—C1-6alkyl-ZAZ, or C1-6alkyl-A, thereby forming a ring; preferably C1-2alkyl-Y—C1-2alkyl, C1-2alkyl-ZA-C1-2alkyl, A—C1-2alkyl-ZA-C1-2alkyl, A-C1-3alkyl-A, or C1-4alkyl-A, wherein each occurrence of Z and A is independently other than a covalent bond,; R8 and R9 are independently selected from hydrogen, metal cation, C1-6alkyl, C1-6alkenyl, C1-6alkynyl, aryl, heteroaryl, C1-6aralkyl, and C1-6heteroaralkyl, preferably from hydrogen, metal cation, and C1-6alkyl, or R8 and R9 together are C1-6alkyl, thereby forming a ring; each R10 is independently selected from hydrogen and C1-6alkyl, preferably C1-6alkyl; and

R11 is independently selected from hydrogen, C1-6alkyl, C1-6alkenyl, C1-6alkynyl, carbocyclyl, heterocyclyl, aryl, heteroaryl, C1-6aralkyl, and C1-6heteroaralkyl,

R15 and R16 are independently selected from hydrogen and C1-6alkyl, or R15 and R16 together form a 3- to 6-membered carbocyclic or heterocyclic ring; and



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Compounds for enzyme inhibition patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Compounds for enzyme inhibition or other areas of interest.
###


Previous Patent Application:
Compounds
Next Patent Application:
Prevention of hypoglycaemia in diabetes mellitus type 2 patients
Industry Class:
Drug, bio-affecting and body treating compositions
Thank you for viewing the Compounds for enzyme inhibition patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.93123 seconds


Other interesting Freshpatents.com categories:
Computers:  Graphics I/O Processors Dyn. Storage Static Storage Printers

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2653
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120277146 A1
Publish Date
11/01/2012
Document #
13411044
File Date
03/02/2012
USPTO Class
514/38
Other USPTO Classes
530330, 514 201, 514 177, 514 193, 514/23, 514/37
International Class
/
Drawings
0


Proteasome


Follow us on Twitter
twitter icon@FreshPatents