stats FreshPatents Stats
4 views for this patent on
2012: 4 views
Updated: April 14 2014
newTOP 200 Companies filing patents this week

    Free Services  

  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • View the last few months of your Keyword emails.

  • Patents sorted by company.


Follow us on Twitter
twitter icon@FreshPatents

Multivalent immunoglobulin-based bioactive assemblies

last patentdownload pdfdownload imgimage previewnext patent

20120276608 patent thumbnailZoom

Multivalent immunoglobulin-based bioactive assemblies

The present invention concerns methods and compositions for stably tethered structures of defined compositions, which may have multiple functionalities and/or binding specificities. Preferred embodiments concern hexameric stably tethered structures comprising one or more IgG antibody fragments and which may be monospecific or bispecific. The disclosed methods and compositions provide a facile and general way to obtain stably tethered structures of virtually any functionality and/or binding specificity. The stably tethered structures may be administered to subjects for diagnostic and/or therapeutic use, for example for treatment of cancer or autoimmune disease. The stably tethered structures may bind to and/or be conjugated to a variety of known effectors, such as drugs, enzymes, radionuclides, therapeutic agents and/or diagnostic agents.

Browse recent Ibc Pharmaceuticals, Inc. patents - Morris Plains, NJ, US
Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
USPTO Applicaton #: #20120276608 - Class: 435188 (USPTO) - 11/01/12 - Class 435 
Chemistry: Molecular Biology And Microbiology > Enzyme (e.g., Ligases (6. ), Etc.), Proenzyme; Compositions Thereof; Process For Preparing, Activating, Inhibiting, Separating, Or Purifying Enzymes >Stablizing An Enzyme By Forming A Mixture, An Adduct Or A Composition, Or Formation Of An Adduct Or Enzyme Conjugate

view organizer monitor keywords

The Patent Description & Claims data below is from USPTO Patent Application 20120276608, Multivalent immunoglobulin-based bioactive assemblies.

last patentpdficondownload pdfimage previewnext patent


This application is a divisional of U.S. patent application Ser. No. 12/949,536, filed Nov. 18, 2010, which is a divisional of U.S. patent application Ser. No. 12/396,605 (now issued U.S. Pat. No. 7,858,070), filed Mar. 3, 2009, which is a divisional of U.S. patent application Ser. No. 11/633,729 (now issued U.S. Pat. No. 7,527,787), filed Dec. 5, 2006, which is a continuation-in-part of PCT/US2006/010762, filed Mar. 24, 2006; PCT/US2006/012084, filed Mar. 29, 2006; PCT/US2006/025499, filed Jun. 29, 2006; U.S. patent application Ser. Nos. 11/389,358 (now issued U.S. Pat. No. 7,550,143), filed Mar. 24, 2006; 11/391,584 (now issued U.S. Pat. No. 7,521,056), filed Mar. 28, 2006 and 11/478,021 (now issued U.S. Pat. No. 7,534,866), filed Jun. 29, 2006; which claimed priority to provisional U.S. Patent Applications Nos. 60/782,332, filed Mar. 14, 2005; 60/728,292, filed Oct. 19, 2005, and 60/751,196, filed Dec. 16, 2005. This application claims the benefit under 35 U.S.C. §119(e) to provisional U.S. Patent Applications No. 60/751,196, filed Dec. 16, 2005, and No. 60/864,530, filed Nov. 6, 2006. The text of each of the applications cited above is incorporated herein by reference in its entirety.


Existing technologies for the production of antibody-based agents having multiple functions or binding specificities suffer a number of limitations. For agents generated by recombinant engineering, such limitations may include high manufacturing cost, low expression yields, instability in serum, instability in solution resulting in formation of aggregates or dissociated subunits, undefined batch composition due to the presence of multiple product forms, contaminating side-products, reduced functional activities or binding affinity/avidity attributed to steric factors or altered conformations, etc. For agents generated by various methods of chemical cross-linking, high manufacturing cost and heterogeneity of the purified product are two major limitations.

In recent years there has been an increased interest in antibodies or other binding moieties that can bind to more than one antigenic determinant (also referred to as epitopes). Generally, naturally occurring antibodies and monoclonal antibodies have two antigen binding sites that recognize the same epitope. In contrast, bifunctional or bispecific antibodies (hereafter, only the term bispecific antibodies will be used throughout) are synthetically or genetically engineered structures that can bind to two distinct epitopes. Thus, the ability to bind to two different antigenic determinants resides in the same molecular construct.

Bispecific antibodies are useful in a number of biomedical applications. For instance, a bispecific antibody with binding sites for a tumor cell surface antigen and for a T-cell surface receptor can direct the lysis of specific tumor cells by T cells. Bispecific antibodies recognizing gliomas and the CD3 epitope on T cells have been successfully used in treating brain tumors in human patients (Nitta, et al. Lancet. 1990; 355:368-371). More recently, a new class of bispecific antibodies termed “bispecific T-cell engagers” (BiTEs) was reported to overcome the limitations of most tumor-targeting bispecific antibodies that involve the recruitment of effector cells for biological activities (Kufer, et al. Trends in Biotechnol. 2004; 22: 238-244). BiTEs are recombinant bispecific single-chain antibodies composed of two distinct single-chain Fc fragments (scFvs) directed against a surface antigen on target cells and CD3 on T cells joined in tandem via a flexible polypeptide linker (Mack, et al., Proc Natl Acad Sci U.S.A. 1995; 92: 7021-7025). BiTEs are produced in mammalian cells and in contrast to other CD3-directed bispecific antibodies are capable of efficiently redirecting human peripheral. T lymphocytes to kill target cells without any requirement for pre- or costimulation of the effector T cells (Mack, et al. J. Immonol. 1997; 158: 3965-3970; Loffler, et al. Blood. 2000; 95: 2098-2103). BiTE concentrations as low as 10-100 pg/mL (˜0.1-2 pM) were shown to be sufficient for achieving half-maximal target cell lysis in vitro (Dreier, et al. Int J. Cancer. 2002; 100: 690-697) and tumor growth could be prevented with sub-microgram amounts in mouse models (Dreier, et al. J. Immunol. 2003; 170: 4397-4404; Schlereth et al. Cancer Res. 2005; 65: 2882-2889).

Numerous methods to produce bispecific antibodies are known. Methods for construction and use of bispecific and multi-specific antibodies are disclosed, for example, in U.S. Patent Application Publication No. 20050002945, filed Feb. 11, 2004, the entire text of which is incorporated herein by reference. Bispecific antibodies can be produced by the quadroma method, which involves the fusion of two different hybridomas, each producing a monoclonal antibody recognizing a different antigenic site (Milstein and Cuello, Nature, 1983; 305:537-540). The fused hybridomas are capable of synthesizing two different heavy chains and two different light chains, which can associate randomly to give a heterogeneous population of 10 different antibody structures of which only one of them, amounting to ⅛ of the total antibody molecules, will be bispecific, and therefore must be further purified from the other forms, which even if feasible will not be cost effective. Furthermore, fused hybridomas are often less stable cytogenically than the parent hybridomas, making the generation of a production cell line more problematic.

Another method for producing bispecific antibodies uses heterobifunctional cross-linkers to chemically tether two different monoclonal antibodies, so that the resulting hybrid conjugate will bind to two different targets (Staerz, et al. Nature. 1985; 314:628-631; Perez, et al. Nature. 1985; 316:354-356). Bispecific antibodies generated by this approach are essentially heteroconjugates of two IgG molecules, which diffuse slowly into tissues and are rapidly removed from the circulation. Bispecific antibodies can also be produced by reduction of each of two parental monoclonal antibodies to the respective half molecules, which are then mixed and allowed to reoxidize to obtain the hybrid structure (Staerz and Bevan. Proc Natl Acad Sci U S A. 1986; 83:1453-1457). An alternative approach involves chemically cross-linking two or three separately purified Fab′ fragments using appropriate linkers. For example, European Patent Application 0453082 disclosed the application of a tri-maleimide compound to the production of bi- or tri-specific antibody-like structures. A method for preparing tri- and tetra-valent monospecific antigen-binding proteins by covalently linking three or four Fab fragments to each other via a connecting structure is provided in U.S. Pat. No. 6,511,663. All these chemical methods are undesirable for commercial development due to high manufacturing cost, laborious production process, extensive purification steps, low yields (<20%), and heterogeneous products.

Other methods include improving the efficiency of generating hybrid hybridomas by gene transfer of distinct selectable markers via retrovirus-derived shuttle vectors into respective parental hybridomas, which are fused subsequently (DeMonte, et al. Proc Natl. Acad Sci USA. 1990, 87:2941-2945); or transfection of a hybridoma cell line with expression plasmids containing the heavy and light chain genes of a different antibody. These methods also face the inevitable purification problems discussed above.

A method to produce a recombinant bispecific antibody composed of Fab fragments from the same or different antibodies that are brought into association by complementary interactive domains inserted into a region of the antibody heavy chain constant region, was disclosed in U.S. Pat. No. 5,582,996. The complementary interactive domains are selected from reciprocal leucine zippers or a pair of peptide segments, one containing a series of positively charged amino acid residues and the other containing a series of negatively charged amino acid residues. One limitation of such a method is that the individual Fab subunits containing the fused complementary interactive domains appear to have much reduced affinity for their target antigens unless both subunits are combined.

Discrete VH and VL domains of antibodies produced by recombinant DNA technology may pair with each other to form a dimer (recombinant Fv fragment) with binding capability (U.S. Pat. No. 4,642,334). However, such non-covalently associated molecules are not sufficiently stable under physiological conditions to have any practical use. Cognate VH and VL domains can be joined with a peptide linker of appropriate composition and length (usually consisting of more than 12 amino acid residues) to form a single-chain Fv (scFv) with binding activity. Methods of manufacturing scFvs are disclosed in U.S. Pat. No. 4,946,778 and U.S. Pat. No. 5,132,405. Reduction of the peptide linker length to less than 12 amino acid residues prevents pairing of VH and VL domains on the same chain and forces pairing of VH and VL domains with complementary domains on other chains, resulting in the formation of functional multimers. Polypeptide chains of VH and VL domains that are joined with linkers between 3 and 12 amino acid residues form predominantly dimers (termed diabodies). With linkers between 0 and 2 amino acid residues, trimers (termed triabody) and tetramers (termed tetrabody) are favored, but the exact patterns of oligomerization appear to depend on the composition as well as the orientation of V-domains (VH-linker-VL or VL-linker-VH), in addition to the linker length.

Monospecific diabodies, triabodies, and tetrabodies with multiple valencies have been obtained using peptide linkers consisting of 5 amino acid residues or less. Bispecific diabodies, which are heterodimers of two different scFvs, each scFv consisting of the VH domain from one antibody connected by a short peptide linker to the VL domain of another antibody, have also been made using a dicistronic expression vector that contains in one cistron a recombinant gene construct comprising VH1-linker-VL2 and in the other cistron a second recombinant gene construct comprising VH2-linker-VL1 (Holliger, et al. Proc Natl Acad Sci USA. 1993; 90: 6444-6448; Atwell, et al. Mol. Immunol. 1996; 33:1301-1302; Holliger, et al. Nature Biotechnol. 1997; 15: 632-631; Helfrich, et al. Int. J. Cancer. 1998; 76: 232-239; Kipriyanov, et al. Int J. Cancer. 1998; 77: 763-772; Holliger, et al. Cancer Res. 1999; 59: 2909-2916).

More recently, a tetravalent tandem diabody (termed tandab) with dual specificity has also been reported (Cochlovius, et al. Cancer Res. 2000; 60: 4336-4341). The bispecific tandab is a dimer of two identical polypeptides, each containing four variable domains of two different antibodies (VH1, VL1, VH2, VL2) linked in an orientation to facilitate the formation of two potential binding sites for each of the two different specificities upon self-association.

To date, the construction of a vector that expresses bispecific or trispecific triabodies has not been achieved. However, polypeptides comprising a collectin neck region are reported to trimerize (Hoppe, et al. FEBS Letters. 1994; 344: 191-195). The production of homotrimers or heterotrimers from fusion proteins containing a neck region of a collectin is disclosed in U.S. Pat. No. 6,190,886.

Methods of manufacturing scFv-based agents of multivalency and multispecificity by varying the linker length were disclosed in U.S. Pat. No. 5,844,094, U.S. Pat. No. 5,837,242, and WO 98/44001. Methods of manufacturing scFv-based agents of multivalency and multispecificity by constructing two polypeptide chains, one comprising of the VH domains from at least two antibodies and the other the corresponding VL domains were disclosed in U.S. Pat. No. 5,989,830 and U.S. Pat. No. 6,239,259. Common problems that have been frequently associated with generating scFv-based agents of multivalency and multispecificity by prior art methods are low expression levels, heterogenous product forms, instability in solution leading to aggregates, instability in serum, and impaired affinity.

A recombinantly produced bispecific or trispecific antibody in which the c-termini of CH1 and CL of a Fab are each fused to a scFv derived from the same or different monoclonal antibodies was disclosed in U.S. Pat. No. 6,809,185. Major deficiencies of this “Tribody” technology include impaired binding affinity of the appended scFvs, heterogeneity of product forms, and instability in solution leading to aggregates.

Thus, there remains a need in the art for a method of making multivalent structures of either monospecificity or multiple specificities or functionalities, which are of defined composition, homogeneous purity, and unaltered affinity, and can be produced in high yields without the requirement of extensive purification steps. Furthermore, such structures must also be sufficiently stable in serum to allow in vivo applications. A need exists for stable, multivalent structures of monospecificity or multiple specificities or functionalities that are easy to construct and/or obtain in relatively purified form.



The present invention discloses a platform technology for generating stably tethered structures that may be monospecific and/or monofunctional, or may have multiple functions or binding specificities, and are suitable for in vitro as well as in vivo applications. In preferred embodiments, such stably tethered structures are produced as complexes of two components, referred herein as A and B, via specific interactions between two distinct peptide sequences, one termed dimerization and docking domain (DDD) and the other anchoring domain (AD). In more preferred embodiments, the DDD sequences (shown for DDD1 and DDD2 in FIG. 1) are derived from the regulatory (R) subunits of a cAMP-dependent protein kinase (PKA), and the AD sequences (shown for AD1 and AD2 in FIG. 2) are derived from a specific region found in various A-kinase anchoring proteins (AKAPs) that mediates association with the R subunits of PKA. However, the skilled artisan will realize that other dimerization and docking domains and anchoring domains are known and any such known domains may be used within the scope of the claimed subject matter. The disclosed methods and compositions enable site-directed covalent or non-covalent association of any two complexes with the DDD/AD coupling system. The X-type four-helix bundle dimerization motif that is a structural characteristic of the DDD (Newlon, et al. EMBO J. 2001; 20: 1651-1662; Newlon, et al. Nature Struct Biol. 1999; 3: 222-227) is found in other classes of proteins, such as the S100 proteins (for example, S100B and calcyclin), and the hepatocyte nuclear factor (HNF) family of transcriptional factors (for example, HNF-1α and HNF-1β). As S100 proteins have biological activities such as tumorigenesis, they may be less desirable for such use.

Over 300 proteins that are involved in either signal transduction or transcriptional activation contain a module of 65-70 amino acids termed the sterile a motif (SAM) domain, which has a variation of the X-type four-helix bundle present on its dimerization interface. For S100B, this X-type four-helix bundle enables the binding of each dimer to two p53 peptides derived from the c-terminal regulatory domain (residues 367-388) with micromolar affinity (Rustandi, et al. Biochemistry. 1998; 37: 1951-1960). Similarly, the N-terminal dimerization domain of HNF-1α(HNF-p1) was shown to associate with a dimer of DCoH (dimerization cofactor for HNF-1) via a dimer of HNF-p1 (Rose, et al. Nature Struct Biol. 2000; 7: 744-748). In alternative embodiments, these naturally occurring systems also may be utilized within the claimed methods and compositions to provide stable multimeric structures with multiple functions or binding specificities. Other binding events such as those between an enzyme and its substrate/inhibitor, for example, cutinase and phosphonates (Hodneland, et al. Proc Natl Acd Sci USA. 2002; 99: 5048-5052), may also be utilized to generate the two associating components (the “docking” step), which are subsequently stabilized covalently (the “lock” step).

Other AD sequences of potential use may be found in Patent Application Serial No. US20003/0232420A1, the entire text of which is incorporated herein by reference.

In exemplary embodiments, one component of a binary complex, A, is produced by linking a DDD sequence to the precursor of A, referred to as A, by recombinant engineering or chemical conjugation via a spacer group, resulting in a structure of A/DDD, hereafter referred to as a. As the DDD sequence in a effects the spontaneous formation of a dimer, A is thus composed of a2. The other component of a binary complex, B, is produced by linking an AD sequence to the precursor of B, referred to as B, by recombinant engineering or chemical conjugation via a spacer group, resulting in a structure of B/AD, hereafter referred to as b. The fact that the dimeric structure contained in a2 creates a docking site for binding to the AD sequence contained in b results in a ready association of a2 and b to form a binary complex composed of a2b. In various embodiments, this binding event is further stabilized with a subsequent reaction to covalently secure the two components of the assembly, for example via disulfide bridges, which occurs very efficiently as the initial binding interactions orient the reactive thiol groups to ligate site-specifically.

By placing cysteine residues at strategic locations in both the DDD and AD sequences (as shown for DDD2 and AD2), the binding interaction between a2 and b can be made covalent via disulfide bridges, thereby forming a stably tethered structure that renders in vivo applications more feasible. The stably tethered structure also retains the full functional properties of the two precursors A and B. The inventors are unaware of any prior art bispecific composition with this unique combination of features. The design disclosed above is modular in nature, as each of the two precursors selected can be linked to either DDD or AD and combined afterwards. The two precursors can also be the same (A=B) or different (A≠B). When A=B, the resulting a2b complex is composed of a stably tethered assembly of three subunits, referred to hereafter as a3. Materials that are amenable as precursors include proteins, peptides, peptide mimetics, polynucleotides, RNAi, oligosaccharides, natural or synthetic polymeric substances, nanoparticles, quantum dots, and organic or inorganic compounds. Other non-limiting examples of precursors of potential use are listed in Tables 6-10 below.

In addition to the use of disulfide linkages for preventing the dissociation of the constituent subunits, other methods for enhancing the overall stability of the stably tethered structure may be practiced. For example, various crosslinking agents or methods that are commercially available or used in research may be selected for such purposes. A potentially useful agent is glutaraldehyde, which has been widely used for probing the structures of non-covalently associated multimeric proteins by cross-linking the constituent subunits to form stable conjugates (Silva, et al. Food Technol Biotechnol. 2004; 42:51-56). Also of interest are two chemical methods involving oxidative crosslinking of protein subunits. One is a proximity labeling technique that employs either hexahistidine-tagged proteins (Fancy, et al. Chem. Biol. 1996; 3:551-559) or N-terminal glycine-glycine-histidine-tagged proteins (Brown, et al. Biochemistry. 1998; 37:4397-4406). These tags bind Ni(II) tightly and, when oxidized with a peracid, a Ni(III) species is produced that is capable of mediating a variety of oxidative reactions, including protein-protein crosslinking. Another technique, termed PICUP (photo-induced crosslinking of unmodified proteins) uses [Ru(II)(bipy)3]2+, ammonium persulfate, and visible light to induce protein-protein crosslinking (Fancy and Kodadek. Proc Natl Acad Sci USA. 1999; 96:6020-6024). However, as discussed below, numerous methods for chemically cross-linking peptide, polypeptide, protein or other macromolecular species are known in the art and any such known method may be used to covalently stabilize the binary a2b complex.

In more preferred embodiments, disclosed in more detail in Examples 23-35 below, hexameric complexes may be formed that are either monospecific or bispecific. Such complexes may be formed, for example, as disclosed in FIG. 10, FIG. 11, and FIG. 13 by attaching one AD2 to each of the C- or N-terminal ends of IgG moieties, which may then bind to DDD2-conjugated Fab fragments or other DDD2-conjugated antibodies or antibody fragments, to form a hexameric complex. As discussed in Examples 23-35, such monospecific or bispecific hexameric complexes show higher binding affinity and increased efficacy compared to the parent antibodies or fragments. Numerous monospecific or bispecific hexameric stably tethered structures are disclosed in Examples 23-35. However, the skilled artisan will realize that the examples are not limiting and a variety of antigen-binding or other functional moieties may be incorporated into the disclosed hexameric structures, discussed in part in Tables 6-10.

The skilled artisan will realize that where the above discussion refers to IgG or Fab fragments, other types of antibodies, antibody fragments, or non-antibody proteins as discussed in more detail below may be substituted. The stably tethered structures may comprise various combinations of antigen-binding components and/or effector components. For example, a bispecific antibody reacting with both activated platelet and tissue plasminogen activator (tPA) would not only prevent further clot formation by inhibiting platelet aggregation but also could dissolve existing clot by recruiting endogenous tPA to the platelet surface (Neblock et al., Bioconjugate Chem. 1991, 3:126-31). A stably tethered structure comprising a multivalent antibody binding component against an internalizing tumor associated antigen (such as CD74) linked to a toxin (such as a ribonuclease) would be valuable for selective delivery of the toxin to destroy the target tumor cell. A stably tethered structure comprising a soluble component of the receptor for IL-4R (sIL-4R) and a soluble component of the receptor for IL-13 (sIL-13R) would be a potential therapeutic agent for treating asthma or allergy. A hexameric, monospecific stably tethered structure composed of anti-GPIIb/IIIa Fab fragments should be more effective in preventing clot reformation than either the monovalent (ReoPro, Centocor) or bivalent analogs due to higher binding avidity. A stably tethered structure comprising multiple copies of a soluble component of TNFα-R should be more efficacious for arresting TNF than Enbrel (Amgen) in the treatment of rheumatoid arthritis and certain other autoimmune diseases (AID).

Download full PDF for full patent description/claims.

Advertise on - Rates & Info

You can also Monitor Keywords and Search for tracking patents relating to this Multivalent immunoglobulin-based bioactive assemblies patent application.
monitor keywords

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Multivalent immunoglobulin-based bioactive assemblies or other areas of interest.

Previous Patent Application:
Zymomonas with improved xylose utilization in stress conditions
Next Patent Application:
Stabilization of perhydrolases
Industry Class:
Chemistry: molecular biology and microbiology
Thank you for viewing the Multivalent immunoglobulin-based bioactive assemblies patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 1.10837 seconds

Other interesting categories:
Electronics: Semiconductor Audio Illumination Connectors Crypto ,  -g2-0.2127

FreshNews promo

stats Patent Info
Application #
US 20120276608 A1
Publish Date
Document #
File Date
Other USPTO Classes
International Class

Follow us on Twitter
twitter icon@FreshPatents