stats FreshPatents Stats
1 views for this patent on
2012: 1 views
Updated: April 21 2014
newTOP 200 Companies filing patents this week

    Free Services  

  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • View the last few months of your Keyword emails.

  • Patents sorted by company.


Follow us on Twitter
twitter icon@FreshPatents

Medium for the specific detection of resistant microorganisms

last patentdownload pdfdownload imgimage previewnext patent

20120276566 patent thumbnailZoom

Medium for the specific detection of resistant microorganisms

A method for distinguishing among a first group of microorganisms, belonging to a first taxon of yeasts that is resistant to an antifungal; a second group of microorganisms, belonging to a second taxon of yeasts that is different than the first taxon of yeasts, and that exhibits the mechanism of resistance to the antifungal exhibited by the first group; and a third group that is not resistant to the antifungal.

Browse recent Biomerieux patents - Marcy L'etoile, FR
Inventors: Sylvain ORENGA, Celine ROGER-DALBERT, John PERRY, Vanessa CHANTEPERDRIX, Gilles ZAMBARDI, Nathalie BAL
USPTO Applicaton #: #20120276566 - Class: 435 14 (USPTO) - 11/01/12 - Class 435 
Chemistry: Molecular Biology And Microbiology > Measuring Or Testing Process Involving Enzymes Or Micro-organisms; Composition Or Test Strip Therefore; Processes Of Forming Such Composition Or Test Strip >Involving Glucose Or Galactose

view organizer monitor keywords

The Patent Description & Claims data below is from USPTO Patent Application 20120276566, Medium for the specific detection of resistant microorganisms.

last patentpdficondownload pdfimage previewnext patent


This is a divisional of application Ser. No. 11/794,907 filed Jul. 9, 2007, which is a National Stage Application of PCT/FR2006/050109 filed Feb. 9, 2006, and claims the benefit of French Application Nos. 0550394 filed Feb. 10, 2005 and 0553049 filed Oct. 7, 2005. The entire disclosures of the prior applications are hereby incorporated by reference herein in their entirety.

The field of the invention is that of microbiological analysis by means of biochemistry, and in particular the detection and identification of microorganisms, for instance of bacteria or yeasts.

Bacterial resistance to antibiotics is a major public health problem. The resistance of infectious microorganisms to a treatment has developed at the same time as anti-infectious molecules and today represents a major obstacle in therapeutics. This resistance is responsible for many problems, including difficulties in detection in the laboratory, limited treatment options and a deleterious impact on clinical outcome.

In particular, the rapid and irrepressible increase in the resistance of pathogenic bacteria, over the last 20 years, represents one of the major current problems in medicine. Infections caused by these organisms are responsible for extended periods of hospitalization and are associated with high morbidity and mortality rates, following therapeutic failures.

Several resistance mechanisms can be involved simultaneously in a bacterial strain. They are generally classified in 3 categories: deficient penetration of the antibiotic into the bacterium, inactivation or excretion of the antibiotic by bacterial enzymatic systems, and lack of affinity between the bacterial target and the antibiotic.

Enzymatic inactivation is the most common mechanism of acquired resistance in terms of number of species and of antibiotics involved. Thus, chromosomal class C cephalosporinases today constitute one of the predominant resistance mechanisms of gram-negative bacteria, the bacteria expressing such enzymes being resistant to cephalosporins. Similarly, β-lactamases are enzymes expressed by certain bacteria, capable of hydrolyzing the C—N bond of the β-lactame ring, the basic structure of antibiotics of the β-lactamine family, so as to give a microbiologically inactive product. Several β-lactamase inhibitors (BLIs), such as clavulanic acid (CA), tazobactam and sulbactam, have been developed in order to increase the antimicrobial activity and broaden the spectrum of the β-lactamines which are associated therewith. They act as a suicide subject for β-lactamases, and prevent enzymatic degradation of the antibiotics and allow them to become effective against bacteria that were initially resistant. However, by virtue of the persistent exposure of strains to antibiotic pressure, the bacteria express their ability to adapt through the continuous and dynamic production of β-lactamases, which evolves at the same time as the development of new molecules. Gram-negative bacteria which produce high-level chromosome class C cephalosporinases (reference is made to HL Case bacteria), and also gram-negative bacteria which produce extended-spectrum β-lactamase (reference is then made to ESBL bacteria) have, as a result, become an increasing threat, in particular because the number of bacterial species concerned is increasing. HL Case and ESBL bacteria are resistant to treatments based on 1st- and 2nd-generation penicillins and cephalosporines, but also on 3rd-generation cephalosporines (C3G) (cefotaxim CTX, ceftazidime CAZ, cefpodoxime CPD, ceftriaxone CRO) and monobactams (aztreonam ATM). On the other hand, 7α-methoxycephalosporins (cephamycins:cefoxitin, cefotetan) and carbapenems (imipenem, meropenem, ertapenem) generally conserve their activity. ESBLs are inhibited by β-lactamase inhibitors (BLIs), which makes it possible to differentiate them from other cephalosporinases.

These bacteria thus most commonly simultaneously express resistances to several treatments, which poses difficulties in setting up a relevant treatment and avoiding therapeutic failures. An Escherichia coli bacterium can thus be HL Case and ESBL. In addition, since ESBL-positive enterobacteria have a tendency to disseminate the resistance by clonal transmission of strains or conjugative plasma transfer, they represent a problem in terms of controlling infections. In most studies, Escherichia coli and Klebsiella pneumoniae remain the most common ESBL-producing species. However, over the last few years, ESBLs have greatly broadened their panel of host species. In fact, many species of enterobacteria and of nonfermenting gram-negative bacilli (such as Pseudomonas aeruginosa) have also been reported to ESBL producers.

In addition to these ESBL bacteria, mention may also be made of Staphylococcus aureus bacteria, which are also pathogenic bacteria that develop many mechanisms of resistance, such as resistance to methicillin, penicillin, tetracycline, erythromycin, or vancomycin. Enterococcus faecium is another multiresistant bacterium found in the hospital environment, which can be resistant to penicillin, vancomycin and linezolide. Mycobacterium tuberculosis is commonly resistant to isoniazid and to rifampicin. Other pathogens offer certain resistances, such as Salmonella, Campylobacter and Streptococcus.

It therefore becomes essential, from a public health point of view, to be able to identify such microorganisms, and such resistance mechanisms, as rapidly as possible.

In general, the search for microorganisms resistant to a treatment is carried out according to the following steps:

1. Taking a biological sample that may contain said microorganisms; 2. Seeding and incubating a culture medium (18 to 48 h) in order to induce exponential growth of the microorganisms; 3. Pinpointing, on the culture media, colonies of potentially significant microorganisms; 4. Characterizing the microorganism species; 5. Identifying the mechanisms of resistance of the microorganisms analyzed, their biological significance and, optionally, the appropriate therapy.

This succession of steps involves a considerable amount of time between taking the sample that may contain microorganisms and prescribing a treatment that is appropriate for the patient. Furthermore, the user must generally perform steps for transferring microorganims from a first medium to a second medium manually, which can induce problems, in particular, of contamination, but also risks to the handler\'s health.

By way of example, in order to detect the presence of broad-spectrum beta-lactamases (ESBLs) in strains of Escherichia coli and Klebsiella pneumoniae, use may be made of a diffusion technique as described in the publication by Jacoby & Han (J Clin Microbiol. 34(4): 908-11, 1996), which does not however give any information regarding the identification of the strains tested: it is possible to determine whether or not the bacterium is a ESBL-producing bacterium, but it is not possible to distinguish whether such a bacterium is an Escherichia coli or a Klebsiella pneumoniae.

Metabolic substrates are also used for detecting the presence of ESBLs or HL cases. In this respect, AES laboratories proposes a medium in a biplate combining a Drigalski medium with cefotaxim and a MacConkey medium with ceftazidime. The Drigalski and MacConkey media make it possible to reveal lactose acidification, a metabolism which is present in a very large number of enterobacterial species. However, such a medium only makes it possible to distinguish resistant bacteria from non-resistant bacteria, and does not make it possible to distinguish bacteria expressing a ESBL from those expressing an HL Case. Neither does this medium make it possible to identify specific bacterial species, nor does it make it possible, for example, to discriminate between E. coli bacteria and K. pneumoniae bacteria.

In the case of the detection of resistance mechanisms other than ESBL, mention may be made of patent application EP0954560, which relates to the search for Vancomycin-resistant enterococcal, by combining Vancomycin with a chromogenic media that reveals two enzymatic activities (β-glucosidase and pyrrolidonyl arylamidase). However, this chromogenic medium makes it possible to determine only whether or not the vancomycin-resistant strains belong to the Enterococcus genus, but does not make it possible to identify the species or the resistance mechanisms involved, in particular if it is a question of an acquired or wild-type resistance.

Thus, the characterization of a species of microorganism, and then the identification of its resistance to a treatment, is long and laborious. If the laboratory gives the clinician a positive screen, whereas the isolate is in fact free of resistant microorganisms, this can lead to needless and inappropriate treatment. Conversely, not communicating a positive screen, which is subsequently confirmed, delays the setting of the isolation of the patient (and possibly an appropriate therapy) by one day. This shows the need for a rapid and reliable confirmation test.

Download full PDF for full patent description/claims.

Advertise on - Rates & Info

You can also Monitor Keywords and Search for tracking patents relating to this Medium for the specific detection of resistant microorganisms patent application.
monitor keywords

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Medium for the specific detection of resistant microorganisms or other areas of interest.

Previous Patent Application:
Method for screening a potential modulator compound of a taste receptor
Next Patent Application:
Stabilization of enzymes with stable coenzymes
Industry Class:
Chemistry: molecular biology and microbiology
Thank you for viewing the Medium for the specific detection of resistant microorganisms patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.85705 seconds

Other interesting categories:
Electronics: Semiconductor Audio Illumination Connectors Crypto ,  -g2-0.2522

FreshNews promo

stats Patent Info
Application #
US 20120276566 A1
Publish Date
Document #
File Date
Other USPTO Classes
International Class

Follow us on Twitter
twitter icon@FreshPatents