FreshPatents.com Logo
stats FreshPatents Stats
3 views for this patent on FreshPatents.com
2013: 1 views
2012: 2 views
Updated: October 13 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Method and probe set for detecting cancer

last patentdownload pdfdownload imgimage previewnext patent


20120276540 patent thumbnailZoom

Method and probe set for detecting cancer


Methods for detecting cancer that include hybridizing a set of chromosomal probes to a biological sample obtained from a patient, and identifying if aneusomic cells are present in a selected subset of cells obtained from the biological sample are described. A set of chromosomal probes and kits for detecting cancer that include sets of chromosomal probes, are also described.

Inventors: Kevin C. Halling, Robert B. Jenkins, Walter King, Irina A. Sokolova, Steven A. Seelig
USPTO Applicaton #: #20120276540 - Class: 435 611 (USPTO) - 11/01/12 - Class 435 


view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120276540, Method and probe set for detecting cancer.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/076,828, filed Mar. 31, 2011, which is a continuation of U.S. application Ser. No. 11/751,429, filed May 21, 2007, which is a continuation of U.S. application Ser. No. 10/121,483, filed Apr. 12, 2002, now U.S. Pat. No. 7,232,655, which is a continuation of U.S. application Ser. No. 09/621,173, filed Jul. 21, 2000, now U.S. Pat. No. 6,376,188, which is a continuation of U.S. application Ser. No. 09/264,149, filed Mar. 5, 1999, now U.S. Pat. No. 6,174,681. The disclosures of the prior applications are considered part of (and are incorporated by reference in) the disclosure of this application.

TECHNICAL FIELD

The invention relates to detecting cancer.

BACKGROUND OF THE INVENTION

Bladder cancer represents the fifth most common neoplasm and the twelfth leading cause of cancer death in the United States, where over 53,000 new cases are diagnosed each year. Over 95% of bladder cancer cases in the United States are transitional cell carcinoma (TCC, sometimes referred to as urothelial cell carcinoma). Tumor state is the best predictor of prognosis for patients with bladder cancer. Bladder cancer is staged according to the depth of invasion of the tumor and whether or not there are lymph node or distant metastases. Non-invasive papillary tumors (the most common and least aggressive type of bladder tumor) are referred to as stage pTa tumors. “Flat” TCC, more commonly referred to as “carcinoma in situ” (CIS) is a more aggressive but less common tumor that is associated with a high rate of progression to invasive disease. CIS is assigned a stage of pTIS. Tumors that have invaded through the basement membrane of the epithelium into the underlying lamina propria are assigned a stage of pT1. A tumor that has invaded the muscle of the bladder is a stage pT2 tumor. Invasion through the muscle into the tissue surrounding the bladder is a pT3 tumor. Invasion into surrounding organs is a pT4 tumor. The term “superficial” bladder cancer refers to pTa, pTIS, and pT1 tumors. Muscle-invasive bladder cancer refers to pT2, pT3 and pT4 tumors.

Approximately 80% of bladder cancer cases present as “superficial” bladder cancer and the remaining 20% as muscle-invasive bladder cancer. Patients with “superficial” bladder cancer do not require cystectomy (i.e. removal of the bladder) but have a high risk of tumor recurrence, and are monitored for tumor recurrence and/progression on a regular basis (usually every 3 months for the first 2 years, every 6 months for the next 2 years, and every year thereafter). Treatment for superficial bladder cancer generally consists of surgical removal of papillary tumors and treatment of CIS with Bacillus-Calmette Guerin (BCG). Patients with muscle invasive disease are treated by cystectomy and have a relatively poor prognosis compared to patients with “superficial” bladder cancer. Unfortunately, 80-90% of patients with muscle invasive bladder cancer initially present with muscle invasive disease. A large share of the estimated 10,000 deaths per year from bladder cancer is accounted for by this group of patients. The fact that many patients with advanced bladder cancer present that way suggests that screening programs that detect bladder cancer at earlier stages may help reduce the overall mortality from the disease. In fact, at least two large screening studies suggest that screening does help identify bladder cancer at earlier stages. Messing et al., Urology,45:387-396, 1995; and Mayfield and Whelan, Br. J. Urol., 82(6):825-828, 1998.

Cystoscopy and urine cytology have been the mainstays for bladder cancer detection over the past several decades. Several studies, however, have shown that cytology has a disappointingly low sensitivity for bladder cancer detection. Mao et al., Science, 271:659-662, 1996; Ellis et al., Urology, 50:882-887, 1997; and Landman et al., Urology, 52:398-402, 1998. For this reason, there has been great interest in the development of new assays that have increased sensitivity for the detection of bladder cancer. Examples of new assays that have been developed for bladder cancer detection include tests that detect bladder tumor antigens, e.g. BT test (C.R. Bard, Inc., Murrayhill, N.J.), NMP-22, FDP, etc., tests that detect increased telomerase activity (usually associated with malignancy), or tests that detect genetic alterations in urinary cells and bladder washings (e.g. fluorescence in situ hybridization (FISH) and microsatellite analysis). Although FISH analysis may be more sensitive than other detection methods, large numbers of cells must be counted, and consequently, the analysis is time consuming and costly. Therefore, a need exists for a rapid method of detecting cancer that maintains adequate sensitivity.

SUMMARY

OF THE INVENTION

The invention is based, in part, on the discovery that a rapid, sensitive method for detecting cancer can be based on the presence of aneusomic cells in a selected subset of cells from a biological sample. Selection of a subset of cells to be evaluated for chromosomal anomalies reduces the number of cells to be analyzed, allowing analysis to be performed in a rapid manner while maintaining, and even improving, sensitivity. The invention also provides a set of chromosomal probes selected to provide the optimal sensitivity in FISH analysis and kits for detecting cancer that include sets of chromosomal probes.

In one aspect, the invention features a method of screening for cancer in a subject. The method includes the steps of hybridizing a set of chromosomal probes to a biological sample from the subject; selecting cells from the biological sample; determining the presence or absence of aneusomic cells in the selected cells; and correlating the presence of aneusomic cells in the selected cells with cancer in the subject. The biological sample can be urine, blood, cerebrospinal fluid, pleural fluid, sputum, peritoneal fluid, bladder washings, oral washings, tissue samples, touch preps, or fine-needle aspirates, and can be concentrated prior to use. Urine is a particularly useful biological sample. The cells can be selected by nuclear morphology including nucleus size and shape. Nuclear morphology can be assessed by DAPI staining. The method is useful for detecting cancers such as bladder cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, colorectal cancer, renal cancer, and leukemia. The method is particularly suited for detecting bladder cancer.

The set of chromosomal probes includes at least three chromosomal probes. The set can include at least one centromeric probe or at least one locus specific probe. Suitable centromeric chromosomal probes include probes to chromosomes 3, 7, 8, 11, 15, 17, 18, and Y. A suitable locus specific probe includes a probe to the 9p21 region of chromosome 9. For example, the set can include centromeric chromosomal probes 3, 7, and 17, and further can include locus specific probe 9p21. The chromosomal probes can be fluorescently labeled.

The invention also features sets of chromosomal probes and kits for detecting cancer that include sets of chromosomal probes, that include centromeric probes to chromosomes 3, 7, and 17, and further can include a locus-specific probe such as 9p21. The chromosomal probes can be fluorescently labeled.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.

DETAILED DESCRIPTION

The invention advantageously provides a rapid, sensitive method for detecting cancer, and can be used to screen subjects at risk for cancer, including solid tumors and leukemias, or to monitor patients diagnosed with cancer for tumor recurrence. For example, subjects at risk for bladder cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, colorectal cancer, head and neck cancer, renal cancer, or leukemia can be screened or monitored for recurrence. In general, a set of chromosomal probes is hybridized to cells (from urine or other biological sample) on a slide. The cells on the slide are then visually scanned at a relatively low power (e.g. 200-400) for morphologic features strongly suggestive of malignancy (e.g. increased nuclear size or irregular nuclear shape). The nuclei of the cytologically abnormal cells are then examined for chromosomal abnormalities by switching the objective to a higher power (e.g. 600-1000×) and “flipping” the filters to determine if the cell is aneusomic or not. Use of this process markedly reduces the time spent assessing cells that have a low probability of being neoplastic and allows the examiner to focus their efforts on the cells that have a much higher probability of being neoplastic and showing aneusomy.

In Situ Hybridization

The presence or absence of aneusomic cells is determined by in situ hybridization. “Aneusomic cells” are cells having an abnormal number of chromosomes or having chromosomal structural alterations such as hemizygous or homozygous loss of a specific chromosomal region. Typically, aneusomic cells having one or more chromosomal gains, i.e., three or more copies of any given chromosome, are considered test positive in the methods described herein, although cells exhibiting monosomy and nullisomy also may be considered test positive under certain circumstances. In general, in situ hybridization includes the steps of fixing a biological sample, hybridizing a chromosomal probe to target DNA contained within the fixed biological sample, washing to remove non-specific binding, and detecting the hybridized probe.

A “biological sample” is a sample that contains cells or cellular material. Typically, the biological sample is concentrated prior to hybridization to increase cell density. Non-limiting examples of biological samples include urine, blood, cerebrospinal fluid (CSF), pleural fluid, sputum, and peritoneal fluid, bladder washings, secretions (e.g. breast secretion), oral washings, tissue samples, touch preps, or fine-needle aspirates. The type of biological sample that is used in the methods described herein depends on the type of cancer one wishes to detect. For example, urine and bladder washings provide useful biological samples for the detection of bladder cancer and to a lesser extent prostate or kidney cancer. Pleural fluid is useful for detecting lung cancer, mesothelioma or metastatic tumors (e.g. breast cancer), and blood is a useful biological sample for detecting leukemia. For tissue samples, the tissue can be fixed and placed in paraffin for sectioning, or frozen and cut into thin sections.

Typically, cells are harvested from a biological sample using standard techniques. For example, cells can be harvested by centrifuging a biological sample such as urine, and resuspending the pelleted cells. Typically, the cells are resuspended in phosphate-buffered saline (PBS). After centrifuging the cell suspension to obtain a cell pellet, the cells can be fixed, for example, in acid alcohol solutions, acid acetone solutions, or aldehydes such as formaldehyde, paraformaldehyde, and glutaraldehyde. For example, a fixative containing methanol and glacial acetic acid in a 3:1 ratio, respectively, can be used as a fixative. A neutral buffered formalin solution also can be used, and includes approximately 1% to 10% of 37-40% formaldehyde in an aqueous solution of sodium phosphate. Slides containing the cells can be prepared by removing a majority of the fixative, leaving the concentrated cells suspended in only a portion of the solution.

The cell suspension is applied to slides such that the cells do not overlap on the slide. Cell density can be measured by a light or phase contrast microscope. For example, cells harvested from a 20 to 100 ml urine sample typically are resuspended in a final volume of about 100 to 200 μl of fixative. Three volumes of this suspension (usually 3, 10, and 30 μl), are then dropped into 6 mm wells of a slide. The cellularity (i.e. density of cells) in these wells is then assessed with a phase contrast microscope. If the well containing the greatest volume of cell suspension does not have enough cells, the cell suspension is concentrated and placed in another well.

Prior to in situ hybridization, chromosomal probes and chromosomal DNA contained within the cell each are denatured. Denaturation typically is performed by incubating in the presence of high pH, heat (e.g., temperatures from about 70° C. to about 95° C.), organic solvents such as formamide and tetraalkylammonium halides, or combinations thereof. For example, chromosomal DNA can be denatured by a combination of temperatures above 70° C. (e.g., about 73° C.) and a denaturation buffer containing 70% formamide and 2×SSC (0.3M sodium chloride and 0.03 M sodium citrate). Denaturation conditions typically are established such that cell morphology is preserved. Chromosomal probes can be denatured by heat. For example, probes can be heated to about 73° C. for about five minutes.

After removal of denaturing chemicals or conditions, probes are annealed to the chromosomal DNA under hybridizing conditions. “Hybridizing conditions” are conditions that facilitate annealing between a probe and target chromosomal DNA. Hybridization conditions vary, depending on the concentrations, base compositions, complexities, and lengths of the probes, as well as salt concentrations, temperatures, and length of incubation. The higher the concentration of probe, the higher the probability of forming a hybrid. For example, in situ hybridizations are typically performed in hybridization buffer containing 1-2×SSC, 50% formamide and blocking DNA to suppress non-specific hybridization. In general, hybridization conditions, as described above, include temperatures of about 25° C. to about 55° C., and incubation lengths of about 0.5 hours to about 96 hours. More particularly, hybridization can be performed at about 32° C. to about 40° C. for about 2 to about 16 hours.

Non-specific binding of chromosomal probes to DNA outside of the target region can be removed by a series of washes. Temperature and concentration of salt in each wash depend on the desired stringency. For example, for high stringency conditions, washes can be carried out at about 65° C. to about 80° C., using 0.2× to about 2×SSC, and about 0.1% to about 1% of a non-ionic detergent such as Nonidet P-40 (NP40). Stringency can be lowered by decreasing the temperature of the washes or by increasing the concentration of salt in the washes.

Chromosomal Probes

Suitable probes for in situ hybridization in accordance with the invention hybridize (i.e., form a duplex) with repetitive DNA associated with the centromere of a chromosome. Centromeres of primate chromosomes contain a complex family of long tandem repeats of DNA, composed of a monomer repeat length of about 171 base pairs, that is referred to as alpha-satellite DNA. Non-limiting examples of centromeric chromosomal probes include probes to chromosomes 3, 7, 8, 11, 15, 17, 18, and Y. Locus-specific probes that hybridize to a critical chromosomal region, such as the 9p21 region of chromosome 9, also are suitable.

Chromosomal probes are chosen for maximal sensitivity and specificity. Using a set of chromosomal probes (i.e., two or more probes) provides greater sensitivity and specificity than use of any one chromosomal probe. Thus, based on the results herein, chromosomal probes that detect the most frequently aneusomic chromosomes, and that complement each other, are included in a set. For example, based on discrimination values of probes determined herein, a set of chromosomal probes can include centromeric probes to chromosomes 3, 7, and 17. Additionally, the set can include probes to the 9p21 region of chromosome 9 or a centromeric probe to chromosome 8, chromosome 9, chromosome 11, or chromosome 18. As described herein, a probe to chromosome 7 when used alone demonstrated a high sensitivity, and could detect about 76% of bladder cancers. Probes to chromosomes 3 and 17, and to the 9p21 region of chromosome 9 were able to detect additional bladder cancer cases that showed no abnormality with chromosome 7 probe alone. The combination of probes to chromosomes 3, 7, 17, and to 9p21 provide a sensitivity of about 95% for detecting bladder cancer in the cohort of patients described herein.

Chromosomal probes are typically about 50 to about 1×105 nucleotides in length. Longer probes typically comprise smaller fragments of about 100 to about 500 nucleotides in length. Probes that hybridize with centromeric DNA and locus-specific DNA are available commercially, for example, from Vysis, Inc. (Downers Grove, Ill.), Molecular Probes, Inc. (Eugene, Oreg.), or from Cytocell (Oxfordshire, UK). Alternatively, probes can be made non-commercially from chromosomal or genomic DNA through standard techniques. For example, sources of DNA that can be used include genomic DNA, cloned DNA sequences, somatic cell hybrids that contain one, or a part of one, human chromosome along with the normal chromosome complement of the host, and chromosomes purified by flow cytometry or microdissection. The region of interest can be isolated through cloning, or by site-specific amplification via the polymerase chain reaction (PCR). See, for example, Nath and Johnson, Biotechnic Histochem., 1998, 73(1):6-22, Wheeless et al., Cytometry, 1994, 17:319-326, and U.S. Pat. No. 5,491,224.

Chromosomal probes typically are directly labeled with a fluorophore, an organic molecule that fluorescesces after absorbing light of lower wavelength/higher energy. The fluorophore allows the probe to be visualized without a secondary detection molecule. After covalently attaching a fluorophore to a nucleotide, the nucleotide can be directly incorporated into the probe with standard techniques such as nick translation, random priming, and PCR labeling. Alternatively, deoxycytidine nucleotides within the probe can be transaminated with a linker. The fluorophore then is covalently attached to the transaminated deoxycytidine nucleotides. See, U.S. Pat. No. 5,491,224.

Fluorophores of different colors are chosen such that each chromosomal probe in the set can be distinctly visualized. For example, a combination of the following fluorophores may be used: 7-amino-4-methylcoumarin-3-acetic acid (AMCA), Texas Red™ (Molecular Probes, Inc., Eugene, Oreg.), 5-(and-6)-carboxy-X-rhodamine, lissamine rhodamine B, 5-(and-6)-carboxyfluorescein, fluorescein-5-isothiocyanate (FITC), 7-diethylaminocoumarin-3-carboxylic acid, tetramethylrhodamine-5-(and-6)-isothiocyanate, 5-(and-6)-carboxytetramethylrhodamine, 7-hydroxycoumarin-3-carboxylic acid, 6-[fluorescein 5-(and-6)-carboxamido]hexanoic acid, N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a diaza-3-indacenepropionic acid, eosin-5-isothiocyanate, erythrosin-5-isothiocyanate, and Cascade™ blue acetylazide (Molecular Probes, Inc., Eugene, Oreg.). Probes are viewed with a fluorescence microscope and an appropriate filter for each fluorophore, or by using dual or triple band-pass filter sets to observe multiple fluorophores. See, for example, U.S. Pat. No. 5,776,688. Alternatively, techniques such as flow cytometry can be used to examine the hybridization pattern of the chromosomal probes.

Probes also can be indirectly labeled with biotin or digoxygenin, or labeled with radioactive isotopes such as 32P and 3H, although secondary detection molecules or further processing then is required to visualize the probes. For example, a probe indirectly labeled with biotin can be detected by avidin conjugated to a detectable marker. For example, avidin can be conjugated to an enzymatic marker such as alkaline phosphatase or horseradish peroxidase. Enzymatic markers can be detected in standard colorimetric reactions using a substrate and/or a catalyst for the enzyme. Catalysts for alkaline phosphatase include 5-bromo-4-chloro-3-indolylphosphate and nitro blue tetrazolium. Diaminobenzoate can be used as a catalyst for horseradish peroxidase.

Selection of Cells

According to the invention, cells are microscopically selected from the cells of a biological sample (e.g. urine, etc.) on a slide prior to assessing if aneusomic cells are present or absent. “Selecting” refers to the identification of cells that are more likely to be neoplastic due to one or more cytologic (mainly nuclear) abnormalities such as nuclear enlargement, nuclear irregularity or abnormal nuclear staining (usually a mottled staining pattern). These nuclear features, can be assessed with nucleic acid stains or dyes such as propidium iodide or 4,6-diamidino-2-phenylindole dihydrochloride (DAPI). Propidium iodide is a red-fluorescing DNA-specific dye that can be observed at an emission peak wavelength of 614 nm. Typically, propidium iodide is used at a concentration of about 0.4 μg/ml to about 5 μg/ml. DAPI, a blue fluorescing DNA-specific stain that can be observed at an emission peak wavelength of 452 nm, generally is used at a concentration ranging from about 125 ng/ml to about 1000 ng/ml. Staining of cells with DAPI or propidium iodide is generally performed after in situ hybridization is performed.

Determining Presence of Aneusomic Cells

After a cell is selected based on one or more of the stated criteria, the presence or absence of aneusomy is assessed by examining the hybridization pattern of the chromosomal probes (i.e. the number of signals for each probe) in each selected cell, and recording the number of chromosome signals. This step is repeated until the hybridization pattern has been assessed in at least 4 cells, if all 4 cells are aneusomic. In a typical assay, the hybridization pattern is assessed in about 20 to about 25 selected cells.

Cells with more than two copies of multiple chromosomes (i.e., gains of multiple chromosomes) are considered cancer positive. Samples containing about 20 selected cells and at least about 4 test positive cells typically are considered cancer positive. If less than about 4 test positive cells are found, the level of chromosome ploidy is determined. A cancer positive result also is indicated if more than 30% of the cells demonstrate hemizygous or homozygous loss (i.e., nullisomy) of a specific chromosome region, such as loss of 9p21 in bladder cancer. Nullisomy can be confirmed as non-artifactual by observing the surrounding normal appearing cells to see if they have two signals for the specific chromosomal region.

Screening and Monitoring Patients for Cancer

The methods described herein can be used to screen patients for cancer, or can be used to monitor patients diagnosed with cancer. For example, in a screening mode, patients at risk for bladder cancer, such as patients older than 50 who smoke, or patients chronically exposed to aromatic amines, are screened with the goal of earlier detection of bladder cancer. The methods described herein can be used alone, or in conjunction with other tests, such as the hemoglobin dipstick test. For example, a patient having an increased risk of bladder cancer can be screened for bladder cancer by detecting hemoglobin in the urine, i.e., hematuria. During such a screening process, patients without hematuria do not need further analysis, and are instead, re-examined for hematuria in an appropriate amount of time, e.g., at their annual check-up. Samples from patients with hematuria are further analyzed using the methods described herein. In general, a set of chromosomal probes is hybridized with the biological sample, a subset of cells is selected, and the presence of aneusomic cells is determined in the selected cells. Patients that have aneusomic cells are further examined, for example, by cystoscopy, and can receive appropriate treatment, if necessary. After treatment, patients are monitored for cancer recurrence using the methods described herein.

The superior sensitivity of the methods described herein indicate that this technique could replace cytology for the detection and monitoring of cancers such as bladder cancer. The majority of patients with bladder cancer will have detectable aneusomic cells and can be monitored for treatment efficacy, and tumor recurrence/progression with the methods described herein. A small proportion of patients with cystoscopic or biopsy evidence of bladder cancer (primarily those with low grade non-invasive tumors) may not have detectable aneusomic cells in their urine. These patients (i.e. those with low grade papillary tumors) are at very low rate of tumor progression and may be conveniently monitored by a combination of the methods described herein and cystoscopy. The appearance of aneusomic cells in the urine of these patients may herald the development of a more aggressive tumor in this subset of patients. The high sensitivity and specificity of the FISH test described herein for aggressive bladder cancers may help reduce the frequency of cystoscopy.

The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.

EXAMPLES Example 1 Samples and Sample Preparation

Samples included voided urine from 21 biopsy proven bladder cancer cases, in which a diagnosis was made by either positive cytology or by histology, in the case of cytology negative samples. Control urine samples included nine samples from normal healthy donors (age 25-80), and three samples from patients with genitourinary diseases other than bladder cancer.

Approximately 50 to 200 ml of urine were collected per patient. Urine samples were stored at 4° C. for less than 48 hours, and processed by centrifugation at 1200 g for 5 minutes. The supernatant was discarded, and the pellet resuspended in 10 ml of 0.075 M KCl, and incubated at room temperature for 15 minutes. Samples were spun for 5 minutes at 1200 g, and the KCl solution was removed. Pellets were resuspended in 10 ml of a 3:1 methanol:glacial acetic acid fixative, and centrifuged for 8 minutes at 1200 g. The fixative was carefully removed leaving the cell pellet, and this step was repeated two more times.

Density of the slides was monitored by frequently checking it under a phase contrast microscope, using a 20× objective, between droppings. Generally, it was attempted to obtain as many cells as possible on the slide without having any cell overlap. If a sample contained low numbers of cells, as much of the sample as possible was placed on the slide. In samples with very low numbers of cells, the whole sample was used. Slides were dried overnight at room temperature. Slides containing the samples were incubated in 2×SSC at 37° C. for 10-30 minutes, then incubated in 0.2 mg/ml pepsin for 20 minutes at 37° C. Slides then were washed in PBS twice, for 2 minutes per wash, at room temperature. Cells were fixed in 2.5% Neutral Buffered Formalin for 5 minutes at room temperature. Slides again were washed in PBS twice, for 2 minutes per wash. After dehydration for 1 minute in each of 70%, 85%, and 100% ethanol, slides were used immediately, or stored at room temperature in the dark.

Three multicolor probe sets: A, B, and C were used in the initial hybridizations. Probe sets A-C contained the centromeric/locus specific probes shown in Table 1. The color of the fluorophore used to label each probe also is shown in Table 1. Chromosomal probes (CEP®, chromosomal enumeration probe) were obtained from Vysis, Inc. (Downers Grove, Ill.). An aqua filter was used to visualize chromosomes 17 and 18. A yellow filter was used to visualize the 9p21 locus specific probe, and a dual red/green filter or individual red or green filters were used to visualize chromosomes 3, 7, 8, 9, 11, and Y.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Method and probe set for detecting cancer patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Method and probe set for detecting cancer or other areas of interest.
###


Previous Patent Application:
Label-free sensing of pna-dna complexes using nanopores
Next Patent Application:
Method for simultaneously detecting polymorphisms of acetaldehyde dehydrogenase 2 and alcohol dehydrogenase 2
Industry Class:
Chemistry: molecular biology and microbiology
Thank you for viewing the Method and probe set for detecting cancer patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.68595 seconds


Other interesting Freshpatents.com categories:
Electronics: Semiconductor Audio Illumination Connectors Crypto

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2386
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120276540 A1
Publish Date
11/01/2012
Document #
13540260
File Date
07/02/2012
USPTO Class
435/611
Other USPTO Classes
International Class
12Q1/68
Drawings
0



Follow us on Twitter
twitter icon@FreshPatents