FreshPatents.com Logo
stats FreshPatents Stats
2 views for this patent on FreshPatents.com
2012: 2 views
Updated: October 13 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Adhesive compositions, adhesive articles and methods for making the same

last patentdownload pdfdownload imgimage previewnext patent


20120276379 patent thumbnailZoom

Adhesive compositions, adhesive articles and methods for making the same


Adhesive compositions comprising a high molecular weight acrylic copolymer and a low molecular weight copolymer are disclosed. Adhesive articles and methods of making adhesive compositions and articles are also described.

Browse recent 3m Innovative Properties Company patents - ,
Inventors: Michael P. Daniels, James D. Laperre, Scott R. Meyer, Jay M. Jennen
USPTO Applicaton #: #20120276379 - Class: 428354 (USPTO) - 11/01/12 - Class 428 
Stock Material Or Miscellaneous Articles > Web Or Sheet Containing Structurally Defined Element Or Component >Adhesive Outermost Layer >Three Or More Layers

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120276379, Adhesive compositions, adhesive articles and methods for making the same.

last patentpdficondownload pdfimage previewnext patent

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. Application Ser. No. 12/304,186, filed Jun. 19, 2007, now pending, which is national stage filing under 35 U.S.C. 371 of PCT/US2007/071551, filed Jun. 19, 2007, which claims priority to U.S. Provisional Patent Application No. 60/815,078, filed Jun. 20, 2006, the disclosures of which are incorporated by reference in their entirety herein.

FIELD

The present disclosure relates to adhesive compositions comprising a high molecular weight acrylic copolymer and a low molecular weight acrylic copolymer.

SUMMARY

In one aspect, the present disclosure is directed to adhesive compositions comprising a blend of a first acrylic copolymer and a second acrylic copolymer. In one exemplary embodiment, the adhesive article comprises a blend of a first acrylic copolymer resulting from polymerization of monomers A and B, wherein (i) the first acrylic copolymer has a number average molecular weight, Mn, of at least about 150,000 (or a weight average molecular weight, Mw, of at least about 450,000), and (ii) monomer B has at least one reactive group that is capable of hydrogen bonding. The second acrylic copolymer results from polymerization of monomers C and D, wherein (i) the second acrylic copolymer has a number average molecular weight, Mn, of less than about 70,000 (or a Mw less than about 100,000), (ii) monomer D has at least one reactive group that is capable of hydrogen bonding, and (iii) the second acrylic copolymer comprises greater than about 10 parts by weight (pbw) of monomer D based on a total weight of the second acrylic copolymer. In some embodiments, the pbw of monomer D in the second acrylic copolymer is greater than the pbw of monomer B in the first acrylic copolymer. In some embodiments, the pbw of monomer D in the second acrylic copolymer is at least about 3 pbw greater than the pbw of monomer B in the first acrylic copolymer.

In a further exemplary embodiment of the present disclosure, the adhesive article comprises a blend of (1) a first acrylic copolymer formed from monomers A and B, wherein the first acrylic copolymer (i) has a number average molecular weight, Mn, of at least about 150,000 (or a Mw of at least about 450,000) and (ii) comprises less than about 10 percent by weight (pbw) of monomer B based on a total weight of the first acrylic copolymer, wherein monomer B has at least one reactive group that is capable of hydrogen bonding; and (2) a second acrylic copolymer formed from monomers C and D, wherein the second acrylic copolymer (i) has a number average molecular weight, Mn, of less than about 70,000 (or a Mw less than about 100,000) and (ii) comprises greater than about 10 pbw of monomer D based on a total weight of the second acrylic copolymer.

In yet a further exemplary embodiment of the present disclosure, the adhesive article comprises an adhesive foam layer comprising a mixture of a first acrylic copolymer and a second acrylic copolymer, wherein the first acrylic copolymer (i) is formed from monomers A and B, wherein monomer B has at least one reactive group that is capable of hydrogen bonding, (ii) has a number average molecular weight, Mn, of at least about 150,000 (or a Mw of at least about 450,000) and (iii) comprises less than about 10.0 percent by weight (pbw) of monomer B based on a total weight of the first acrylic copolymer; and the second acrylic copolymer (i) is formed from monomers B and C, (ii) has a number average molecular weight, Mn, of less than about 70,000 (or a Mw of less than about 100,000) and (iii) comprises a percent by weight (pbw) of monomer B based on a total weight of the second acrylic copolymer, wherein the pbw of monomer B of the second acrylic copolymer is greater than the pbw of monomer B of the first acrylic copolymer.

In another aspect, the present disclosure provides adhesive articles comprising one or more adhesive core layers and, optionally, one or more additional layers. In one exemplary embodiment of the present disclosure, the adhesive article comprises (a) an adhesive core layer comprising the above-described blend or mixture of a first acrylic copolymer having a relatively high molecular weight and a second acrylic copolymer having a relatively low molecular weight; and (b) at least one additional layer on a major surface of the adhesive core layer. The adhesive article of the present disclosure may further comprise other layers including, but not limited to, a second adhesive layer, such as a pressure-sensitive adhesive layer and/or a heat-activatable adhesive layer, at least one release liner, at least one non-adhesive substrate layer, or any combination thereof.

In another aspect, the present disclosure is further directed to methods of making adhesive articles. In one exemplary embodiment, the method of making an adhesive article comprises the steps of extruding a blend of (1) a first acrylic copolymer formed from monomers A and B, wherein the first acrylic copolymer (i) has a number average molecular weight, Mn, of at least about 150,000 (or a Mw of at least about 450,000) and (ii) comprises less than about 10 percent by weight (pbw) of monomer B based on a total weight of the first acrylic copolymer, wherein monomer B has at least one reactive group that is capable of hydrogen bonding; and (2) a second acrylic copolymer formed from monomers C and D, wherein the second acrylic copolymer (i) has a number average molecular weight, Mn, of less than about 70,000 (or a Mw of less than about 100,000) and (ii) comprises greater than about 10 pbw of monomer D based on a total weight of the second acrylic copolymer; and exposing the extrudate to an amount of irradiation so as to obtain a controlled degree of crosslinking between the first acrylic copolymer and the second acrylic copolymer. Desirably, the controlled degree of crosslinking between the first acrylic copolymer and the second acrylic copolymer results in a crosslinked adhesive article having a stress relaxation ratio G(300)/G(0.1) as measured by a Stress Relaxation Test at 70° C. of less than or equal to about 0.30, desirably, from about 0.13 to about 0.30.

In another exemplary embodiment, the method of making an adhesive article comprises providing an electron beam generating apparatus having a first control for an accelerating voltage and a second control for a dose; providing a material to be cured having a composition, a thickness, and a density; determining one or more desired properties capable of resulting from a controlled amount of crosslinking using the electron beam generating apparatus; and using a Minimum Calculated Core Cure value of the material based on dose-depth profile calibration curves for the electron beam generating apparatus and for the material to be cured, crosslinking the material at a voltage and dose that results in the one or more desired properties. The exemplary method may further comprise preparing the dose-depth profile calibration curves for the electron beam generating apparatus and for the material to be cured based on the composition, thickness, and density of the material; and determining the Minimum Calculated Core Cure value based on the dose-depth profile calibration curves.

These and other features and advantages of the present disclosure will become apparent after a review of the following detailed description of the disclosed embodiments and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross-sectional view of an exemplary adhesive article according to some embodiments of the present disclosure;

FIG. 2 is a cross-sectional view of an exemplary tape according to some embodiments of the present disclosure in roll form comprising an exemplary adhesive article having a removable release liner on an outer surface thereon;

FIG. 3 is a schematic drawing of an exemplary extrusion process for preparing adhesive articles according to some embodiments of the present disclosure;

FIG. 4 provides an exemplary graph showing electron beam radiation dose versus tape depth for the sample tape of Example 1 after electron beam radiation exposure to one outer surface;

FIG. 5 provides an exemplary graph showing electron beam radiation dose versus tape depth for the sample tape of Example 1 after electron beam radiation exposure to both outer surfaces;

FIG. 6 provides an exemplary graph showing electron beam radiation dose versus tape depth for the sample tape of Example 1 after electron beam radiation exposure to both outer surfaces at a lower accelerating voltage than used in the trial shown in FIG. 5;

FIG. 7 provides an exemplary graph showing Stress Relaxation at 70° C. versus Minimum Calculated Core Cure for sample tapes of Examples 1-8; and

FIG. 8 provides an exemplary graph showing Stress Relaxation at 70° C. versus the product of the Average Calculated Core Cure (ACCC) and the Minimum Calculated Core Cure (MCCC) for sample tapes of Examples 1-8.

DETAILED DESCRIPTION

Generally, the adhesive compositions of the present disclosure comprise a mixture of a high molecular weight acrylic copolymer and a low molecular weight acrylic copolymer. In some embodiments, the adhesive compositions may optionally further comprise one or more additional components as described below.

The high molecular weight acrylic copolymer is also referred to herein as the “first acrylic copolymer.” The first acrylic copolymer is formed from monomer(s) A and monomer(s) B. As used herein, the term “monomer(s)” indicates that one or more monomers may be selected. For example, “monomer(s) A” may include one or more monomers selected from those monomers suitable for use as a monomer A. Similarly, “monomer(s) B” refers to the one or more monomers selected from those monomers suitable for use as a monomer B.

Suitable monomers for monomer A include, but are not limited to, acrylic or methacrylic esters of non-tertiary alkyl alcohols, with the alkyl groups having from 1 to 20 carbon atoms (for example, from 3 to 18 carbon atoms). Such monomers A include, but are not limited to, methyl(meth)acrylate, ethyl(meth)acrylate, n-butyl(meth)acrylate, lauryl(meth)acrylate, 2-ethylhexyl(meth)acrylate, cyclohexyl(meth)acrylate, isooctyl(meth)acrylate, octadecyl(meth)acrylate, tridecyl(meth)acrylate, nonyl(meth)acrylate, decyl(meth)acrylate, dodecyl(meth)acrylate, isobornyl(meth)acrylate, 2-phenoxyethyl(meth)acrylate, benzyl(meth)acrylate, n-hexyl(meth)acrylate, n-octyl(meth)acrylate, phenyl(meth)acrylate, or any combination thereof. As used herein, the term “(meth)acrylate” is used to refer to either one or both of the acrylate and methacrylate species. For example, methyl(meth)acrylate refers to methyl acrylate, methyl methacrylate, and combinations thereof.

Suitable monomers for monomer B include, but are not limited to, acrylic, methacrylic, or other unsaturated acids with the alkyl group having from 1 to 20 carbon atoms (for example, from 3 to 18 carbon atoms). Such monomers B include, but are not limited to, acrylic acid, methacrylic acid, itaconic acid, citraconic acid, maleic acid, fumaric, acid, and itaconic, citraconic, maleic and fumaric monoesters (these are diacid compounds and their monoester offer an acid group), or any combination thereof. Other suitable monomers B include acrylonitrile, methacrylonitrile, vinyl acetate, N-vinyl pyrrolidone, isobornyl acrylate, cyano ethyl acrylate, N-vinylcaprolactam, maleic anhydride, hydroxyalkylacrylates, N,N-dimethyl aminoethyl(meth)acrylate, N,N-diethylacrylamide, vinylidene chloride, styrene, vinyl toluene, hydroxyarylacryaltes, tetrahydrofurfuryl(meth)acrylate, and alkyl vinyl ethers.

In some embodiments, at least one monomer B comprises a monomer having at least one reactive group thereon that is capable of hydrogen bonding (for example, —COOH).

In some embodiments, the first acrylic copolymer comprises less than about 10 percent by weight (pbw) of monomer(s) B based on a total weight of the first acrylic copolymer. In some embodiments, the first acrylic copolymer comprises from about 2 to about 7 pbw of monomer(s) B based on a total weight of the first acrylic copolymer.

The high molecular weight acrylic copolymer component (or first acrylic copolymer) may be formed using conventional polymerization techniques. These techniques are generally known in the industry and include processes such as thermally initiated polymerization, photoinitiation, suspension polymerization, and the like. Typically, in addition to monomer(s) A and monomer(s) B, an appropriate polymerization initiator can be used to initiate polymerization of monomers A and B. Suitable initiators for photoinitiation include, but are not limited to, 2,2-dimethoxy-2-phenylacetophenone (for example, IRGACURE™ 651 commercially available from Ciba-Geigy (Hawthorne, N.Y.)); 2-hydroxy-1-(4-*2-hydroxyethoxy)phenyl)-2-methyl-1propanone (for example, DAROCURE™ 2959 commercially available from Ciba-Geigy); 2-hydroxy-2-methyl-1-phenyl-1-propanone (for example, DAROCURE™ 1173 commercially available from Ciba-Geigy); diphenyl (2,4,6-trimethylbenzoyl)-phosphine oxide (for example, LUCIRIN™ TPO commercially available from BASF Corporation (Florham Park, N.J.)); 1-hydroxycyclohexyl phenyl ketone (for example, IRGACURE™ 184 commercially available from Ciba-Geigy); 2-methyl-1-(4-(methythio) phenyl)-2-(4-morpholinyl)-1-propanone (for example, IRGACURE™ 907 commercially available from Ciba-Geigy); 2-benzyl-2-(dimethylamino)-1-(4-(4-morpholinyl)phenyl)-1-butanone (for example, IRGACURE™ 369 commercially available from Ciba-Geigy); phenylbis (2,4,6-trimethyl benzoyl)- phosphine oxide (for example, IRGACURE™ 819 commercially available from Ciba-Geigy), or ethyl 2,4,6-trimethylbenzoylphenylphosphinate (for example, LUCIRIN™ TPO-L commercially available from BASF Corporation).

Further, a chain transfer agent may be present during the polymerization reaction. Chain transfer agents may be used to control the molecular weight of the resulting polymer and reduce the amount of residual monomer remaining after the polymerization reaction. Suitable chain transfer agents include, but are not limited to, isooctyl thioglycolate (IOTG) (for example, IOTG commercially available from Daicel Chemical Industries, LTD (Tokyo, JAPAN) or from Dow Chemical Company (Midland, Mich.)); n-octyl mercaptan (for example, commercially available from Arkema (Philadelphia, Pa.); n-decyl mercaptan (for example, commercially available from Philips Petroleum (Houston, Tex.)); n-hexyl mercaptan (for example, commercially available from Arkema); n-octadecyl mercaptan (for example, commercially available from ACIMA Chemical Industries (Philadelphia, Pa.)); n-dodecyl mercaptan (for example, commercially available from Arkema); tert-dodecyl mercaptan (for example, commercially available from Arkema); and 2-ethylhexyl thioglycolate (for example, commercially available from Arkema).

In some embodiments, the first acrylic copolymer has a number average molecular weight, Mn, of at least about 150,000. In some embodiments, the first acrylic copolymer has a weight average molecular weight, Mw of at least about 450,000. As used herein, number average molecular weight, Mn, and weight average molecular weight, Mw, are measured using the Gel Permation Chromatography (GPC) test method described in the “Test Methods” section below.

In some embodiments, the first acrylic copolymer has a Mn ranging from about 150,000 to about 600,000 (and/or a Mw of at least about 450,000 to about 2,000,000). In some embodiments, the first acrylic copolymer has a Mn ranging from about 160,000 to about 350,000 (and/or a Mw of at least about 480,000 to about 1,000,000) and in some embodiments, a Mn from about 170,000 to about 300,000 (and/or a Mw of at least about 500,000 to about 900,000).

Generally, the first acrylic copolymer may be present in an amount that varies depending on the desired properties of the resulting adhesive composition. Typically, the first acrylic copolymer is present in an amount greater than about 50 percent by weight (pbw) based on a total weight of the adhesive composition. In some embodiments, the first acrylic copolymer is present in an amount greater than about 60, greater than about 65, or even greater than about 70 pbw. In some embodiments, the first acrylic copolymer is present in an amount ranging from about 75 to about 98 pbw, based on a total weight of the adhesive composition.

Adhesive compositions according to the present disclosure further comprise a low molecular weight acrylic copolymer, also referred to herein the “second acrylic copolymer.” The second acrylic copolymer is formed from monomer(s) C and monomer(s) D. Suitable monomers for monomer C are the same as those suitable for monomer A, and are described above with respect to the first acrylic copolymer. Similarly, suitable monomers for monomer D are the same as those suitable for monomer B, as described above with respect to the first acrylic copolymer.

Generally, each of the monomer(s) A, B, C, and D are independently selected. In some embodiments, one or more of the monomers selected for use as monomer(s) A may also be selected for use as monomer(s) C. Similarly, in some embodiments, one or more monomers selected for use as monomer(s) B may also be selected for use as monomer(s) D.

In some embodiments, the second acrylic copolymer comprises greater than about 10 pbw of monomer(s) D based on a total weight of the second acrylic copolymer. In some embodiments, the second acrylic copolymer comprises from about 12 to about 30 pbw of monomer(s) D, and, in some embodiments, from about 15 to about 20 pbw of monomer(s) D, based on a total weight of the second acrylic copolymer.

Typically, the pbw of monomer(s) D of the second acrylic copolymer is greater than the pbw of monomer(s) B of the first acrylic copolymer. In some embodiments, the pbw of monomer(s) D of the second acrylic copolymer is at least 3 pbw greater than the pbw of monomer(s) B of the first acrylic copolymer. In other embodiments, the pbw of monomer(s) D of the second acrylic copolymer is at least 5 pbw (or at least 8 pbw, or at least 10 pbw, or at least 12 pbw, or at least 15 pbw) greater than the pbw of monomer(s) B of the first acrylic copolymer.

In some embodiments, at least one monomer C of the second acrylic copolymer is identical to at least one monomer A of the first acrylic copolymer. In some embodiments, all of the monomer(s) C of the second acrylic copolymer are the same as the monomer(s) A of the first acrylic copolymer. In other embodiments, each monomer C of the second acrylic copolymer differs from all of the monomer(s) A of the first acrylic copolymer.

In some embodiments, the second acrylic copolymer is substantially free of “photoinitiator monomers,” that is, (i) monomers containing reactive groups that are susceptible to forming radicals in the presence of a photoinitiator and (ii) monomers, which are themselves photoactive radical formers. In such an exemplary embodiment, the second acrylic copolymer is formed from monomers C and D, and possibly additional monomers, as long as the additional monomers are not photoinitiator monomers. In some embodiments, the first acrylic copolymer is also substantially free of photoinitiator monomers.

The low molecular weight acrylic copolymer component (that is, the second acrylic copolymer) may be formed using conventional polymerization techniques as discussed above with regard to the high molecular weight acrylic copolymer component (or first acrylic copolymer). In addition to monomer(s) C and monomer(s) D, a polymerization initiator and/or chain transfer agent may be present during the polymerization reaction.

In some embodiments, the second acrylic copolymer has a number average molecular weight, Mn, of less than about 70,000. In some embodiments, the second acrylic copolymer has weight average molecular weight, Mw, of less than about 100,000. In some embodiments, the second acrylic copolymer has a number average molecular weight, Mn, ranging from about 10,000 to about 70,000 (and/or a Mw of from about 14,000 to about 100,000). In some embodiments, the second acrylic copolymer has a number average molecular weight, Mn, ranging from about 15,000 to about 60,000 and/(or a Mw of from about 20,000 to about 84,000), and, in some embodiments, a Mn of from about 20,000 to about 55,000 (and/or a Mw of from about 28,000 to about 77,000).

The second acrylic copolymer may be present in an amount that varies depending on the desired properties of the resulting adhesive composition. Typically, the second acrylic copolymer is present in an amount less than about 50 pbw based on a total weight of the adhesive composition. In some embodiments, the second acrylic copolymer is present in an about less than about 40 pbw, or less than about 35 pbw, or even less than about 30 pbw. In some embodiments, the second acrylic copolymer is present in an amount ranging from about 25 to about 2 pbw, based on a total weight of the adhesive composition.

In some embodiments, various additives or other ingredients may be added to the adhesive composition to impart or modify particular characteristics of the ultimate adhesive composition. The additives may be present in any amount as long as the amount does not adversely interfere with the desired properties of the adhesive composition. In some embodiments, the adhesive composition comprises one or more additives in an amount of up to about 50 weight percent, based on the total weight of the adhesive composition. Exemplary additives include, but are not limited to, tackifiers, plasticizers, fillers, antioxidants, pigments, diffusing materials, fibers, filaments, silicas, treated silicas, carbon black, dyes, expandable polymeric microspheres, non-expandable polymeric or glass microspheres, chain transfer agents, chemical blowing agents, reinforcing agents, calcium carbonate, toughening agents, fire retardants, acrylate-insoluble polymers, finely ground polymeric particles such as polyester, nylon, or polypropylene, stabilizers, and combinations thereof.

In one exemplary embodiment, the adhesive composition comprises a foam having voids throughout at least a portion of the adhesive composition. Voids may be formed by incorporating a variety of additives into the adhesive core layer prior to or during formation of the adhesive core layer. For example, expandable polymeric microspheres, hollow polymeric or glass microspheres, foaming agents, or any combination thereof may be incorporated into the adhesive core layer in order to form voids throughout at least a portion of the adhesive core layer. Suitable void-forming materials include, but are not limited to, void-forming materials disclosed in U.S. Pat. No. 6,103,152. In some embodiments, expandable polymeric microspheres, such as those disclosed in U.S. Pat. No. 6,103,152, are incorporated into the adhesive composition in an amount ranging from about 1 pbw to about 15 pbw, and, in some embodiments, from about 2 pbw to about 6 pbw, based on a total weight of the adhesive composition.

In some embodiments, the adhesive composition may be an outermost layer of the adhesive article. In some embodiments, the adhesive composition may be sandwiched between two or more similar or dissimilar substrates.

In some embodiments, the adhesive articles of the present disclosure comprise one or more layers with at least one layer, for example, a core layer, being formed from an adhesive composition comprising a crosslinkable or crosslinked mixture of high and low molecular weight acrylic copolymers. As shown in FIG. 1, exemplary adhesive article 40 comprises adhesive core layer 41 having first major surface 42 and second major surface 44. In some embodiments, adhesive article 40 includes at least one of first additional layer 43 on first major surface 42, and second additional layer 45 on second major surface 44. Exemplary adhesive article 40 further comprises first outer major surface 46 on first additional layer 43 and second outer major surface 48 on second additional layer 45.

Generally, the adhesive core layer comprises an intimate mixture (or blend) of the above-described first and second acrylic copolymers. In some embodiments, the first and second acrylic copolymers are mixed with one another so as to result in a desired degree of hydrogen bonding between the first and second acrylic copolymers. In some embodiments, the first and second acrylic copolymers are mixed so as to result in a degree of hydrogen bonding that provides an adhesive core having a desired amount of stress relaxation, while maintaining desired performance during high temperature shear.

In some embodiments, the first and second acrylic copolymers are substantially miscible with one another so that the resulting mixture comprises a single phase or domain. In other embodiments, the first and second acrylic copolymers, when mixed, form two separate phases or domains intimately blended with one another. In either case, the resulting mixture provides a degree of hydrogen bonding between the first and second acrylic copolymers.

In one exemplary embodiment in which the first and second acrylic copolymers are extruded with one another, the polymers may be immiscible with one another so that small domains of each polymer are present in the extrudable mixture. By minimizing the time between mixing and extruding or by using in-line static mixing, extrusion of the adhesive mixture can occur before any substantial amount of phase separation takes place. By cooling the extrudate in a relatively rapid manner, the first and second acrylic copolymers remain in an intimate mixture, which can then be subsequently crosslinked as described below.

In some embodiments, the adhesive composition possesses a stress relaxation ratio (G(300)/G(0.1)) value (that is, “SRR value”) of less than about 0.3, and in some embodiments, from about 0.1 to about 0.3, as measured by the “Stress Relaxation Test” conducted at 70° C. (as described below in the “Test Methods” section). The SSR value of a given adhesive composition provides an indication of the ability of the adhesive to (i) deform under continuous load and (ii) resist deformation as the adhesive extends under the continuous load. FIG. 7 provides an exemplary graph showing the change in SRR values of various polymer compositions as the amount of exposure to electron beam radiation increases. The controlled amount of exposure to electron beam radiation is measured as a minimum calculated core cure (“MCCC”) amount as described in the “Test Methods” section below.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Adhesive compositions, adhesive articles and methods for making the same patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Adhesive compositions, adhesive articles and methods for making the same or other areas of interest.
###


Previous Patent Application:
Cover tape, method for manufacturing cover tape, and electronic part package
Next Patent Application:
Double-coated pressure-sensitive adhesive sheet for optical use
Industry Class:
Stock material or miscellaneous articles
Thank you for viewing the Adhesive compositions, adhesive articles and methods for making the same patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.81325 seconds


Other interesting Freshpatents.com categories:
Electronics: Semiconductor Audio Illumination Connectors Crypto

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2416
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120276379 A1
Publish Date
11/01/2012
Document #
13546279
File Date
07/11/2012
USPTO Class
428354
Other USPTO Classes
521134, 522112
International Class
/
Drawings
6



Follow us on Twitter
twitter icon@FreshPatents