stats FreshPatents Stats
n/a views for this patent on
Updated: April 21 2014
newTOP 200 Companies filing patents this week

    Free Services  

  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • View the last few months of your Keyword emails.

  • Patents sorted by company.


Follow us on Twitter
twitter icon@FreshPatents

Electrothermal interface material enhancer

last patentdownload pdfdownload imgimage previewnext patent

20120276327 patent thumbnailZoom

Electrothermal interface material enhancer

Vertically oriented carbon nanotubes (CNT) arrays have been simultaneously synthesized at relatively low growth temperatures (i.e., <700° C.) on both sides of aluminum foil via plasma enhanced chemical vapor deposition. The resulting CNT arrays were highly dense, and the average CNT diameter in the arrays was approximately 10 nm, A CNT TIM that consist of CNT arrays directly and simultaneously synthesized on both sides of aluminum foil has been fabricated. The TIM is insertable and allows temperature sensitive and/or rough substrates to be interfaced by highly conductive and conformable CNT arrays. The use of metallic foil is economical and may prove favorable in manufacturing due to its wide use.

Browse recent Purdue Research Foundation patents - West Lafayette, IN, US
Inventors: Baratunde A. Cola, Timothy S. Fisher
USPTO Applicaton #: #20120276327 - Class: 428119 (USPTO) - 11/01/12 - Class 428 
Stock Material Or Miscellaneous Articles > Structurally Defined Web Or Sheet (e.g., Overall Dimension, Etc.) >Including Sheet Or Component Perpendicular To Plane Of Web Or Sheet

view organizer monitor keywords

The Patent Description & Claims data below is from USPTO Patent Application 20120276327, Electrothermal interface material enhancer.

last patentpdficondownload pdfimage previewnext patent


This application claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 60/829,753, filed Oct. 17, 2006, entitled ELECTROTHERMAL INTERFACE MATERIAL ENHANCER, incorporated herein by reference.


The United States government may have rights to certain aspects of this invention as a result of funding from Air Force Research Lab Grant No. FA8750-04-D-2409.


This invention pertains to flexible structures having nanostructures attached to a surface, and in particular to deformable thermal and electrical interface materials using multiwalled carbon nanotubes.


Electrical contacts are vital elements in many engineering systems and applications at the macro, micro, and nano scales. Reliability and functionality of electrical contacts can often be a limiting design factor. A major portion of electrical contact resistance comes from the lack of ideal mating between surfaces. Primary causes of this problem involve the mechanical properties of the surfaces and surface roughness. When two surfaces are brought together, the actual contact area may be much smaller than the apparent contact area. The contact between two surfaces can actually be thought of as the contact of several discrete points in parallel, referred to as solid spots or α-spots. Thus, only the α-spots act as conductive areas and can be a small percentage of the total area.

Since their discovery, carbon nanotubes (CNTs) have been studied intensively throughout many communities in science and engineering. Several researchers have reported on the mechanical, electrical, and thermal properties of individual single-wall carbon nanotubes (SWNTs). The electrical properties of SWNTs are affected by the chirality of the SWNTs to the degree that the SWNTs can exhibit metallic or semiconducting electrical conductivity. The electrical transport properties of a single SWNT are a well studied subject. It has been shown that for ballistic transport and perfect contacts, a SWNT has a theoretical resistance of 6.45 KΩ, which is half of the quantum resistance h/2e2. In MWCNTs, each layer within the MWCNT can have either a metallic or semi-conducting band structure depending on its diameter and chirality. Due to this variation among layers, the net electrical behavior of a MWCNT is typically metallic and a wide range of resistance values, e.g., from 478Ω to 29 KΩ, have been reported.

The use of an individual MWCNT may not be low enough to reduce contact resistance at an interface significantly. However, by using an array of MWCNTs as an interfacial layer, it is expected that numerous individual contact spots and contact area enlargement can create current flow paths through each contact, thus reducing overall resistance. An additional advantage to using CNTs is that they can tolerate high current densities. Therefore a MWCNT layer can be a potential solution to the reliability and functionality issues faced at electrical interfaces.

Various embodiments of the present invention present novel and nonobvious apparatus and methods for improved structural, electrical, and thermal interfaces.


FIG. 1A is a schematic diagram of a photoacoustic (PA) test apparatus.

FIG. 1B is a schematic representation of a nanoparticle assembly according to one embodiment of the present invention.

FIG. 1C is a schematic representation of a nanoparticle assembly according to another embodiment of the present invention.

FIG. 2 is a comparison of contact resistance between a bare Cu—Cu Interface and a Cu-MWCNT-Cu Interface.

FIG. 3 depicts a classification of the Contact Surface.

FIG. 4a is a typical contact configuration of a bare Cu—Cu contact.

FIG. 4b shows a contact resistance reduction by parallel contacts created by MWCNTs according to one embodiment of the present invention.

FIG. 5 shows SEM images according to one embodiment of the present invention of a CNT array synthesized on a Si substrate on a silicon substrate. (a) A 30°-tilted plane, top view of the vertically oriented and dense CNT array. The array height is estimated to be 15 μm. The CNT array has a part across the top of the image that helps illustrate the uniformity of growth. (b) An image with higher magnification showing individual CNTs. CNT diameters range from 15-60 nm.

FIG. 6 shows SEM images according to one embodiment of the present invention of a CNT array synthesized on a Cu sheet according to one embodiment of the present invention. (a) Cross-section view of the vertically oriented and dense CNT array. The array height is estimated to be approximately 20 μm; the inset shows the CNT array grown on a 1 cm tall Cu bar. (b) An image with higher magnification showing individual CNTs. The CNT diameters range from 15-60 nm.

Download full PDF for full patent description/claims.

Advertise on - Rates & Info

You can also Monitor Keywords and Search for tracking patents relating to this Electrothermal interface material enhancer patent application.
monitor keywords

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Electrothermal interface material enhancer or other areas of interest.

Previous Patent Application:
Insulating molded part and method for the production thereof
Next Patent Application:
Decorated card
Industry Class:
Stock material or miscellaneous articles
Thank you for viewing the Electrothermal interface material enhancer patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.61519 seconds

Other interesting categories:
Electronics: Semiconductor Audio Illumination Connectors Crypto ,  -g2-0.2148

FreshNews promo

stats Patent Info
Application #
US 20120276327 A1
Publish Date
Document #
File Date
Other USPTO Classes
165185, 428143, 1562722, 427331, 427569, 977773, 977742, 977890
International Class

Follow us on Twitter
twitter icon@FreshPatents