FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: December 09 2014
newTOP 200 Companies filing patents this week


Advertise Here
Promote your product, service and ideas.

    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Your Message Here

Follow us on Twitter
twitter icon@FreshPatents

Volume-adjustable manual ventilation device

last patentdownload pdfdownload imgimage previewnext patent

20120272965 patent thumbnailZoom

Volume-adjustable manual ventilation device


Disclosed is a manually operable volume-adjustable ventilation device. The device includes a reservoir with an inlet mechanism, an outlet mechanism, and a volume adjuster configured to move a volume adjustment limit of the reservoir and change an expressed maximum volume of the reservoir. The reservoir has a body having a plurality of movable walls defining an enclosed volume. The reservoir has an uncompressed state and a compressed state. The walls of the reservoir are movable with respect to each other, such that moving the walls expresses the volume adjustment limit of the reservoir.

Browse recent Artivent Corporation patents - San Francisco, CA, US
Inventor: Ian Halpern
USPTO Applicaton #: #20120272965 - Class: 12820514 (USPTO) - 11/01/12 - Class 128 
Surgery > Respiratory Method Or Device >Means For Supplying Respiratory Gas Under Positive Pressure >Respiratory Gas Supplied From Expandable Bag, Bellows, Or Squeeze Bulb >Means For Adjusting Gas Volume Delivered To User From Bag, Bellows, Or Bulb During Inflation-deflation Cycle



view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120272965, Volume-adjustable manual ventilation device.

last patentpdficondownload pdfimage previewnext patent

This application claims the benefit under 35 U.S.C. §120 as a continuation of U.S. application Ser. No. 12/698,928 filed on Feb. 2, 2010 and currently pending, which is in turn a continuation of U.S. application Ser. No. 11/952,094 filed on Dec. 6, 2007 and currently pending. U.S. application Ser. No. 12/698,928 also claims the benefit as a continuation-in-part application of U.S. patent application Ser. No. 11/635,381, filed Dec. 6, 2006, now U.S. Pat. No. 7,658,188, which in turn is a continuation-in-part of U.S. application Ser. No. 11/147,070 filed Jun. 6, 2005, now U.S. Pat. No. 7,537,008. Each of the aforementioned priority applications is hereby incorporated by reference in their entireties.

FIELD OF THE INVENTION

The present invention relates generally to manual ventilation devices.

BACKGROUND OF THE INVENTION

Manual ventilation or resuscitation is performed on an individual when they are unable to breathe independently. Typically, this occurs when an individual is transported from one section of a hospital to another section such as an emergency room and an intensive care unit, or in an ambulance. Manual resuscitation also occurs during cardiopulmonary resuscitation (CPR), which is a standard technique applied to victims of cardiopulmonary arrest with the goal to re-establish normal cardiac and respiratory function.

Ventilation from a manual resuscitation device is currently provided by a self-filling elastomeric enclosure or bag. This bag is compressible by hand, a face-fitting mask (or intubation tube) in fluid communication with an outlet passage of the bag, and a one-way valve between the mask and bag to permit only fluid passage from the bag to the mask. The bag also has an inlet passage, typically with one opening for air and another, usually smaller opening for receiving oxygen. By squeezing the bag with their hand(s), a clinician delivers air or oxygen to an individual, and then releases the bag to permit it to expand to full size and thereby draw air or oxygen through the inlet passage.

The amount of air received by the lungs of the individual corresponds to the volume of the bag. A larger bag provides a greater maximum volume of air to be pumped into the individual. Children and infants typically have smaller lungs than an adult, and therefore conventional manual resuscitation devices are provided in different sizes; e.g., infant, child and adult. Each size provides a different maximum volumetric output of air. Depending on factors such as physical condition, body size, age, sex, etc., each individual may require a specific volume of air (tidal volume), and frequency, and minute ventilation.

Unfortunately, current manual ventilation or resuscitation devices are not suitable for the desired monitoring and control of tidal volume delivery. For instance, the collapsible bag portion of the resuscitation device allows the user to merely “feel” the amount of air they are providing to the individual. This provides them merely a very rough estimate of the volume of air they are providing and a tactile feel for when the lungs are non-compliant, i.e. are being pressurized. Although self-filling respiration (resuscitation) enclosures or bags can be selected on the basis of known maximum volumes, the volume actually delivered can vary substantially among several operators, dependent upon factors such as hand size, number of hands used, technique, enthusiasm and fatigue. These variations have been shown to be as much as 60 percent of the optimal tidal volume. Frequency can also vary between users, resulting in potential underventilation or overventilation.

Accordingly, what is needed is a single manual ventilation or resuscitation device that can be used on any patient, regardless of individual factors such as physical condition, body/lung size, age and sex.

SUMMARY

OF THE INVENTION

In one aspect, disclosed is a ventilation device that includes a reservoir having a movable wall defining an enclosed volume, such that moving the wall expresses an adjustment limit. Moving the limit results in a change in the expressed maximum volume of the device.

In another aspect, disclosed is a single manual ventilation or resuscitation device. The body of the device has panels, that can be rigid, that encompass a sealed volume with an inlet mechanism and an outlet mechanism. The rigid panels are movable with respect to each other to allow the body to move between an uncompressed state and a compressed state. Once in compressed state a volume restoring mechanism is responsible to restore the volume from the compressed state back to the uncompressed state.

One of the objectives of the invention is to be able to hold the body with one hand and to compress the body with that one hand. To meet this objective, in one embodiment, the body is characterized by having a displacement in a direction of a hand displacement (e.g., height of the body) and at least one other direction (e.g., width of the body) other than this hand displacement. In another embodiment, the body is characterized by having a displacement in a direction of a hand displacement (e.g., height of the body) and at least two other directions (e.g., width and length of the body) other than this hand displacement. The displacement in width and/or length is a function of the height displacement and the geometry of the rigid panels.

The axial displacement of a panel is preferably no more than about 85 mm, preferably no more than about 20-25 mm, and more preferably no more than about 10-15 mm. Some of the displacements would have to comfortably fit between the thumb, one or more fingers and the web of the hand. In other words, the natural range of a grasping motion of a hand defines these displacements. The expressed (delivered) volume of the device, in some embodiments, can be no more than about 500 cc, or no more than about 250 cc (infant and child), or no more than about 1400 cc (infant to adult). In another embodiment, the expressed (delivered) volume of the device can range from about 250-1200 cc (child to adult).

A size adjuster is included to adjust one or more of the body displacements to change the dimension of the uncompressed state or volume. These axial size adjustments can be no more than about 170 mm, and preferably no more than about 25 mm in some embodiments. The objective of the size adjuster is to adjust the displacement to then adjust the volume of e.g., the air delivered to an individual. Hence the size adjuster is also referred to as a volume adjuster.

A frequency adjuster is included to adjust the time to restore the volume from the compressed state to the uncompressed state or to adjust the time to compress the volume from the uncompressed state to the compressed state.

Feedback mechanisms could be included to provide tactile feedback, visual and/or audible feedback to the user. An example of tactile feedback is to include tactile feedback areas, e.g., a flexible material, to cover an opening in a rigid panel. These areas allow the user to feel the compression force or lung resistance. These tactile areas are preferably sized and positioned to fit a thumb or one or more fingers of the user's hand. An example of a visual feedback mechanism is to provide the user feedback over the size (volume) adjustments or the frequency. An example of an audible feedback mechanism is to provide the user feedback over e.g., the compression speed, frequency, tidal volume, setting of the size (volume) adjuster or setting of the frequency control adjuster.

One advantage of the device is the ergonomic fit of the body to a user's hand in both uncompressed and compressed state, which reduces fatigue to hand and/or arm muscles. Another advantage of the device is the ability to adjust the volume and/or frequency so that the user can rely on a more or less constant tidal volume and tidal rate. Such ability allows one to use the device on any patient, regardless of individual factors such as physical condition, body/lung size, age and sex. Yet another advantage is that multiple devices could easily be stacked or nested with each other. In exemplary embodiments, the design and geometry could be configured to include such stacking or nesting capabilities.

In another aspect, disclosed is a manually operable volume-adjustable ventilation device. The device has a reservoir with an inlet mechanism, an outlet mechanism, and a volume adjuster configured to move a volume adjustment limit of the reservoir and change an expressed maximum volume of the reservoir. The reservoir has a body having a plurality of movable walls defining an enclosed volume. The reservoir has an uncompressed state and a compressed state. The walls of the reservoir are movable with respect to each other, such that moving the walls expresses the volume adjustment limit of the reservoir. The walls can be operably connected by movable structures configured such that two adjacent walls are configured to rotate around substantially orthogonal axes with respect to each other when the reservoir moves from an uncompressed to a compressed state. In some embodiments, the movable structures can be hinges, such as snap-fit assembly hinges. The movable structures and the movable walls can be co-molded together. In some aspects, the device can include a covering layer of the body of the reservoir. The covering layer can be a slide-on skin, and/or comolded or adhered to the walls of the reservoir.

In some embodiments, the device is configured such that applying a force to at least one of the walls of the device will result in the reservoir moving from the uncompressed state to a fully compressed state. The device can also be configured such that an expressed volume of the device for a given adjustment limit is consistently no more than about 10 cc of a disclosed volume setting on the volume adjuster from compression to compression for a given force of compression and airway resistance of a patient. The device can also further include a volume restoring mechanism to restore the reservoir from the compressed state to said uncompressed state. The volume restoring mechanism can be, for example, a compression spring, an extension spring, or a resilient covering layer. The volume adjuster can include a stop dial.

In some aspects, the device can further include a frequency adjuster to adjust the time to restore the reservoir from the compressed state to the uncompressed state, and/or the time to compress said reservoir from the uncompressed state to the compressed state. The device can be configured such that the maximum change in expressed volume of the reservoir is no more than about 1400 cc, no more than about 1200 cc, no more than about 500 cc, or no more than about 250 cc in some embodiments. The device can include tactile feedback areas on one or more of said walls. The tactile feedback areas can be flexible areas and sized and positioned to fit a thumb of a hand or one or more fingers of the hand. The device can also include a visual feedback mechanism. In some embodiments, the visual feedback mechanism is an expandable air reservoir operably connected to the inlet mechanism of the device; the air reservoir having an expandable wall configured to indicate the presence of air flow through the reservoir. In some embodiments, the device further includes an audible feedback mechanism, which is a pop-off valve in some embodiments.

The device can also include an air filter operably connected to the inlet of the device. Furthermore, the device can also include an inflow line with measurement markings to measure an aspect of the patient and estimate an appropriate expressed volume based on the measurement. In some aspects, the device can be compressed in a stored configuration to less than 35% of a fully expanded volume of the device; wherein the device is configured to deliver at least 95% of the fully expanded volume of the device after being stored for at least about 3 years, 5 years, 10 years, 15 years, or more. The device can also be configured such that three devices can be stacked in a shelf with a shelf height of no more than about 200 mm, or no more than about 180 mm. The device can also have a height of no more than about 70 mm and/or a side panel width of no more than about 50 mm to allow the device to be comfortably compressed in one hand by an operator.

In some aspects, also disclosed is a method of ventilating a patient. The method includes the step of providing a ventilation device that includes a reservoir with an inlet mechanism, an outlet mechanism, and a volume adjuster configured to move a volume adjustment limit of the reservoir and change an expressed maximum volume of the reservoir. The reservoir can include a body having a plurality of movable walls defining an enclosed volume. The reservoir has an uncompressed state and a compressed state. The walls can be movable with respect to each other, such that moving the walls expresses the volume adjustment limit of the reservoir. The walls can be operably connected by movable structures configured such that two adjacent walls are configured to rotate around substantially orthogonal axes with respect to each other when the reservoir moves from an uncompressed to a compressed state. The method also can include the step of selecting an appropriate expressed maximum volume setting from the volume adjuster. In some aspects, the device is connected the inlet of the device to an air or oxygen source. Also, the outlet of the device can be connected to a mask or tube configured to interface with a patient's airway. Next, the device can be actuated from an uncompressed state to a compressed state by applying a force to at least one wall of the device. In some aspects, the method includes the step of releasing the force to allow the reservoir to move back from the compressed state to the uncompressed state. The reservoir can moves back from the compressed state to the uncompressed state by the action of a volume restoring mechanism. As noted above, the volume restoring mechanism can be, for example, a compression spring, an extension spring, and a resilient covering layer. The movable structures can be hinges. The movable structures and the walls can be co-molded together. The device can be configured such that the maximum change in expressed volume of the reservoir is no more than about 1400 cc.

In some embodiments, selecting an appropriate expressed maximum volume setting from the volume adjuster involves turning a stop dial. In some aspects, the method includes the step of adjusting the time to restore the reservoir from the compressed state to the uncompressed state or adjusting the time to compress the reservoir from the uncompressed state to the compressed state. In some aspects, the method also includes the step of observing a visual feedback mechanism that indicates the presence of airflow into the device. The visual feedback mechanism can be, for example, an air reservoir with an expandable wall configured to indicate the presence of air flow through the reservoir. In other aspects, the method includes the step of listening to an audible feedback mechanism that provides feedback over one or more of the group consisting of: the compression speed, frequency, and expressed volume of the device. Also, the method can include the step of filtering air before air enters the body of the device.

Also disclosed is a face mask for use with a manually operable volume-adjustable ventilation device. The mask includes an inlet, an inner portion operably connected to the inlet, and an outer portion. The mask can be configured to transform from a first configuration to fit over an adult's face to a second configuration to fit over a child's face. The mask can also be configured to reversibly transform from a first configuration to fit over an adult's face to a second configuration to fit over a child's face. The inner portion can include a bi-stable cone movable between a first stable position to a second stable position. The mask can also include a tear-away seam between the inner portion and the outer portion.

In other embodiments, also disclosed is a face mask for use with a manually operable volume-adjustable ventilation device; the mask configured to create a sealing surface on a patient's face, the sealing surface extending substantially from cephalad at the base of the nose near the alar sidewalls to caudally under the mandible.

In some embodiments, also disclosed herein is a manually operable volume-adjustable ventilation device, that includes a reservoir with an inlet mechanism, an outlet mechanism, and a volume adjuster configured to move a volume adjustment limit of the reservoir and change an expressed maximum volume of the reservoir. The reservoir can include a body having a plurality of movable walls defining an enclosed volume. The reservoir can have an uncompressed state and a compressed state, wherein said walls are movable with respect to each other, such that moving said walls expresses the volume adjustment limit of the reservoir. The walls can be operably connected by movable structures. The body can include a first end, a second end, a central portion, a first transition zone between the first end and the central portion, and a second transition zone between the central portion and the second end. The body can decrease in a radial dimension in the first transition zone between a first point on the first end to a first point on the central portion, and then increases in radial dimension from a second point on the first end to a second point on the central portion in the first transition zone to the first end. The body can also decrease in a radial dimension in the second transition zone between a first point on the second end to a third point on the central portion, and then increase in radial dimension from a second point on the second end to a fourth point on the central portion in the second transition zone to the second end. The device can also include a sealing layer integrated with the body of the reservoir of the device. In some embodiments, the covering layer includes a plurality of redundant folds between at least some of the adjacent movable walls. In some embodiments, the device has a configuration where the first transition zone comprises at least four substantially coplanar pairs of movable walls. The movable structures can be configured such that two adjacent walls are configured to rotate around substantially orthogonal axes with respect to each other when the reservoir moves from an uncompressed to a compressed state. A movable wall can rotate around an axis that intersects one or more axes that one or more panels rotate around. In some embodiments, the device can also include a pressure valve having a control to adjust a pressure setting of the device, wherein the control includes indicia to view a selected pressure setting selected. In some embodiments, a transition zone of the device includes at least 4, 5, 6, 7, 8, or more movable walls.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a three-dimensional perspective view of a manual ventilation device, according to one embodiment of the invention.

FIGS. 1A-C are schematic diagrams illustrating movement of panels of a manual ventilation device in the presence and absence of movable structures, according to one embodiment of the invention.

FIG. 2 shows a side view of the device of FIG. 1, according to one embodiment of the invention.

FIG. 3 shows a top view of the device of FIG. 1, according to one embodiment of the present invention.

FIG. 4 shows a front view of the body of the device of FIG. 1, according to one embodiment of the invention. The hook-up to a mask or intubation tube, and outlet is left out for clarity.

FIG. 5 shows a hand with dimensions for grasping and operating the device according to one embodiment of the invention.

FIG. 6 shows an exploded view of the device of FIG. 1, according to one embodiment of the invention.

FIG. 7 shows an example of a size (volume) adjuster of the device according to one embodiment of the invention.

FIG. 7A illustrates an exploded perspective cut-away view of an adjustment dial, according to one embodiment of the invention.

FIG. 7B illustrates a horizontal sectional view of an adjustment dial, according to one embodiment of the invention.

FIG. 8 shows an example of a mechanism to restore the volume of the body of the device from a compressed state to an uncompressed state according to some embodiments of the invention.

FIG. 9 shows an example of a frequency adjuster of the device according to one embodiment of the present invention.

FIG. 10 shows an example of a visual feedback mechanism according to one embodiment of the present invention.

FIG. 11 shows an example of a tactile feedback mechanism according to one embodiment of the present invention.

FIG. 12 shows an example of stacking or nesting devices according to one embodiment of the present invention.

FIGS. 13A-D illustrate embodiments of visual airflow indicators that can be used with a volume-adjustable manual ventilation device, according to some embodiments of the invention.

FIG. 14 illustrates an inflow line configured to allow for measuring an aspect of the patient, according to one embodiment of the invention.

FIG. 15 is a perspective view of a ventilation device, according to one embodiment of the invention.

FIG. 16 is an exploded view of the ventilation device illustrated in FIG. 15.

FIG. 17A is a side view of the ventilation device of FIG. 15 in an uncompressed state, with the covering layer removed for clarity.

FIG. 17B is a side view of the ventilation device of FIG. 15 in a compressed state.

FIGS. 18A-B are top horizontal sectional views of the ventilation device of FIG. 15 in uncompressed and compressed states, respectively.

FIG. 19A is a vertical sectional view of device 1500 through line 19A-19A of FIG. 18A.

FIG. 19B is a vertical sectional view of device 1500 through line 19B-19B of FIG. 18B.

FIGS. 20A-D illustrate a face mask that includes a bi-stable cone such that the mask can be reversibly transformed from a first configuration for adults to a second configuration for pediatric patients, according to one embodiment of the invention.

FIGS. 21A-C illustrate a face mask with a tear-away seam such that the mask can be transformed from a first configuration for adults to a second configuration for pediatric patients, according to one embodiment of the invention.

FIGS. 22A-C illustrate an embodiment of a face mask that is shaped and configured to create a sealing surface extending from cephalad at the base of the nose near the alar sidewalls to caudally under the mandible as shown.

FIGS. 23A-C are perspective views an embodiment of a “bow-tie” shaped ventilation device in expanded and progressively compressed states.

FIGS. 24A-B are cut-away views of the device of FIGS. 23A-C.

FIG. 25A is an exploded perspective view of a ventilation device with supplemental side panels, according to one embodiment of the invention.

FIG. 25B illustrates the device shown in FIG. 25A with a skin layer.

FIG. 25C illustrates a ventilator with panels surrounding an Ambu bag reservoir, according to one embodiment of the invention.

FIGS. 26A-C illustrate a partial perspective view of a ventilation device with supplemental side panels, in expanded and progressively compressed states, according to one embodiment of the invention.

FIGS. 27A-C illustrate a partial perspective view of a mechanical ventilator without supplemental side panels, in expanded and progressively compressed states.

FIG. 28A is a perspective view of a mechanical ventilator with elongate folds, according to one embodiment of the invention.

FIG. 28B is an end view of the device of FIG. 28A, in an expanded configuration.

FIG. 28C is an end view of the device of FIG. 28A, in an compressed configuration.

FIG. 29A illustrates axes in which certain panels of a ventilation device are capable of rotating around.

FIG. 30A illustrates a ventilation device with a PEEP port having a control, according to one embodiment of the invention.

FIG. 30B illustrates a view of the pressure port of FIG. 30A with the control at a first pressure setting.

FIG. 30C illustrates a view of the pressure port of FIG. 30A with the control at a second pressure setting.

DETAILED DESCRIPTION

OF THE PREFERRED EMBODIMENT

Although the following detailed description contains many specifics for the purposes of illustration, one of ordinary skill in the art will readily appreciate that many variations and alterations to the following exemplary details are within the scope of the invention. Accordingly, the following preferred embodiments of the invention are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.

A three-dimensional view of one example of the ventilation or resuscitation device 100 is shown in FIG. 1. In general, three parts can be distinguished: a reservoir that includes a body 110, an input mechanism 120 to allow input of e.g., air, oxygen, oxygen-enriched air, fluid, fluid mixture, gas, gas mixtures or any combination or derivative thereof in body 110, and an output mechanism 130 to output and deliver some or all of the inputted content from body 110 to an individual via connector 132. Body 110 distinguishes a plurality of movable walls (also referred to as panels herein). Movable walls can be, in some embodiments, panels that are movable with respect to each other. In some embodiments, the panels are rigid or substantially rigid. Design of body 110 with rigid panels encompasses a sealed volume that can contain e.g., air, oxygen or oxygen-enriched air. Another aspect of the invention is to be able to hold the body of the device with one hand and to compress the body with that one hand. In one embodiment, as will be clear from reading the description, disclosed is a device with a body having rigid panels whereby the body is characterized as having a displacement in a direction of a hand displacement and at least one other direction other than that particular hand displacement.

In the particular example of FIG. 1 body 110 distinguishes a plurality of panels; e.g., panels forming the top, panels forming the bottom, and panels for each side. More particularly, the following (main) panels can be distinguished, i.e. panels 140A, 140B, 140D, 140E, 140F, 140G and 140H, which are all visible in FIG. 1; panels 140D, 140E, 140F, 140G, 140H, 140D′, 140E′, 140F′, 140G′, 140H′, which are all visible in FIG. 2; panels 140A, 140B, 140C, 140D, 140E, 140F, 140G, 140H, 140D″, 140E″, 140F″, 140G″ and 140H″, which are all visible in FIG. 3; and panels 140C and 140C′, which are all visible in FIG. 4. Panels blocked from the views in FIGS. 1-4, are 140A′, 140B′, 140D′″, 140E′″, 140F′″, 140G′″, 140H′″. The relative positions and orientations of the panels blocked in the figures is readily appreciated by a person of ordinary skill in the art to which this invention pertains.

The movable parts or structures, indicated by 150 in FIGS. 1, 2 and 4 could be living joints/hinges, snaps, joints, fabricated flexures, heat-shrinked joints or flexures, welded joints, simple mechanical hinges, pinned hinges, flexible hinges, snap-fit assembly hinges, or the like. The type of movable structure 150 depends on the type of manufacturing that is used to create the rigid panels and body. Examples of different types of manufacturing of the panels, movable structures and body are e.g., blow molding, heat sealing, overmolding, the mechanical assembly of a rigid paneled chassis with a flexible bladder or skin to form the body, coining to form living hinges, assembly using gaskets as seals in hinges, injection molding, ultrasonic welding, radio frequency welding, dielectric welding, high frequency welding, dipping, extrusion, spray coating, brush on, assembly of adhesive backed sheets of various materials, and/or any type of manufacturing that results in a body with rigid panels that are movable with respect to each other. In some embodiments, the panels of the body 110 and the movable structures 150 are co-molded together to allow for the use of a very compliant low durometer material for the panels of the device 100 to advantageously provide a soft grip for an operator of the device, while still utilizing a very durable, rigid material for the movable structures 150. A person of ordinary skill in the art to which this invention pertains would readily appreciate the different types of manufacturing that can be used to make body 110, which are known techniques in the mechanical and design engineering art. Input mechanism 120 and output mechanism 130 could be manufactured and integrated along with the manufacturing process of body 110 or later assembled to body 110. The types of materials that can be used for the rigid panels, input mechanism 120, output mechanism 130 and other structures of the device are, for example, polymers, plastic, polyethylene, polycarbonate, high impact polystyrene, K-resin, ABS, PVC, acetal, polypropylene, silicone, thermoplastic elastomers, thermoplastic rubbers, latex, fabrics, cardboard, nylon webbing, or the like.

The volume delivery is preferably consistent from compression to compression, as well as consistent with respect to a disclosed volume setting on the volume adjuster. In a preferred embodiment, the device 100 is configured to output a consistent, reproducible volume for a given speed of compression of the device 100 by an operator and for a given airway resistance. In some embodiments, the actual volume delivered differs by no more than about 50 cc, 40 cc, 30 cc, 25 cc, 20 cc, 15 cc, 10 cc, 5 cc, or less than the volume selected on the volume adjuster to be delivered. In some embodiments, the device 100 can be configured such that the actual volume delivered per compression can be consistently reproducible within no more than about 50 cc, 40 cc, 30 cc, 25 cc, 20 cc, 15 cc, 10 cc, 5 cc, or less from a preset delivered value (e.g., from volume adjuster) compression to compression.

The device 100 is also preferably configured to preferably deliver a consistent volume regardless of the manner or speed in which the device is compressed. In some embodiments, the device 100 is configured to deliver a consistent volume when compressed using a mechanical force, for example, one hand, two hands, one foot, two feet, a knee, in between two knees, an elbow, or a forearm (while bracing the device against a thigh or other surface, e.g., a table or the patient\'s head). The device 100 is also preferably configured such that applying a force to any one or more of the walls of the body 110 will result in delivery of a consistent volume, and will also result in the device achieving a fully compressed state. The fully compressed state of the device 100 preferably has a volume of no more than about 40%, 35%, 30%, 25%, 20%, 15%, 10% or less of the uncompressed state of the device 100.

Body 110 has an uncompressed state where the panels are positioned to create a volume that can be filled with e.g., air, oxygen or oxygen-enriched air. From the uncompressed state, body 110 can change to a compressed state where the panels are moved with respect to each other to decrease the volume with respect to the volume in the uncompressed state. In other words, moving the rigid panels with respect to each other from the uncompressed state to the compressed state, air, oxygen or oxygen-enriched air is outputted via output mechanism 130. The uncompressed state could be at full expansion (i.e. maximum volume) or any intermediate state (See also size adjuster (volume) description). Restoring the volume allows entry of new air, oxygen or oxygen-enriched air into the volume via input mechanism 120.

In some embodiments, the device 100 also includes an air filter. The air filter is preferably integrated with the device, for example, via an adapter operably connected to the input mechanism 120. The air filter can advantageously remove dust, pollen, mold, bacteria, viruses, and other airborne particles from an air source prior to entry into body 110 of the device 100. In some embodiments, the air filter is configured to meet or exceed HEPA (high efficiency particulate air) filter standards.

Body 110 has a height H, width W and length L (see FIGS. 1-4). In general, the state changes of body 110 could be characterized by the height H of body 110 being larger in the uncompressed state compared to the compressed state. The height changes cause changes in width W and length L, which are smaller in the uncompressed state compared to the compressed state. The width and length changes are a function of the height changes and the geometry of panels as a person of ordinary skill would readily appreciate. It is further noted that the body could be characterized by having at least two of the panels capable of rotating around substantially orthogonal axes with respect to each other; consider e.g., panels 140F and 140C which are both involved in the height changes, but given their orientation, 140F is further related to the width changes, and 140C is further related to the length changes. In summary, the body is characterized as having a displacement in a direction of a “hand displacement (e.g., height of body) and at least two other directions (e.g., width and length of body) other than the particular hand displacement (e.g., height of body).

FIGS. 1A-1C are schematic diagrams illustrating the interaction of panels 140 where movable structures 150 are either present or absent on a ventilation device 100. FIG. 1A shows that adjacent movable walls (e.g., 140F and 140F′; 140F″ and 140F′″ are not shown) can be operably connected by movable structures 150, which can be snap-fit assembly hinges, according to one embodiment of the invention. Dotted line 151 represents an axis, defined by the border between two adjacent walls 140F, 140F′ as shown, around which walls 140F and 140F′ can rotate with respect to hinge 150. The movable structures 150 are preferably configured such that a movable structure 150 operably connected to two adjacent walls can rotate substantially uniformly around the axis 151 when the reservoir 110 of device 100 moves from an uncompressed to a compressed state, and vice versa. In this way, the hinges 150 operably connected to adjacent walls, e.g., 140F, 140F′ advantageously provide for generally uniform collapse and expansion of the device 100 substantially preventing non-uniform bending or sliding of the walls 140F, 140F′ in axes other than axis 151 as shown; preventing non-uniform bending of walls 140A and 140C as shown, and resulting in consistent volume delivery to a patient. This is in contrast to a ventilation device that collapses non-uniformly due to the absence of stabilizing movable structures (such as hinges 150) between, for example, unhinged folds of inflatable bladders, disclosed, for example in U.S. Pat. No. 4,898,167 to Pierce et al., which is hereby incorporated by reference in its entirety. The absence of stabilizing movable structures (such as hinges 150) can result in rotation and/or flexing of the folds in multiple axes, and consequently, inconsistent volume delivery. The side view schematics shown in FIGS. 1B-1C illustrate how device 100 would non-uniformly rotate without hinges 150 operably connected to panels 140F and 140F′. FIG. 1B is a side view schematic of the device of FIG. 1A depicting panels 140A, 140C, 140F, 140F′ without hinges 150. FIG. 1C is of the same side view as FIG. 1B after compression of the device. As shown, the absence of movable structures between, for example, panels 140F and 140F′ can allow panels to rotate non-uniformly in multiple axes other than 151. End panel 140A, for example, could rotate non-uniformly with respect to panel 140C. As noted above, this can undesirably lead to inconsistent volume delivery.

The body could also have a higher or a smaller number of panels than body 110, as a person of average skill in the art to which this invention pertains would appreciate. For example, the panels could be assembled radially around central top and bottom panels and more panels can be added, for example, 140F can be broken up into two or more panels. An example of reducing panel numbers could be achieved by reducing 140A, 140B and 140C to only two panels. In the latter example the body would have height and width or length changes. In summary, such bodies could be characterized as having a displacement in a direction of a hand displacement (e.g., the height of body) and at least one other direction (e.g., the width or length of body) other than the particular hand displacement (e.g., the height of body).

As mentioned above, one of the key objectives of the invention is to be able to hold the device with one hand and to be able to compress the body with that one hand. To meet the objective the height and width changes in uncompressed and compressed state are therefore constrained since they would need to fit: (i) the hand of a user and (ii) the grasping (or squeezing) range of motion of the user.

Furthermore, the thumb and one or more fingers are desirably positioned on body 110 to create a mechanical advantage (i.e. a large moment arm with respect to the point of rotation) when compressing the body. Such a mechanical advantage meets another objective of the invention, which is to reduce fatigue of the hand muscles and potentially also the arm muscles.

FIG. 5 shows hand 500 with thumb 502, one or more fingers 504 and web of the hand 506 between which body 110 is typically held. Given a variety of hand sizes (e.g. male, female, large and small) in mind one could determine a reasonable range of motion and a comfortable fit to the user\'s hand that constrains the height and width dimensions of body no when moving between the uncompressed state and a compressed state. The maximum height of the fully expanded device, in some embodiments is no more than about 100 mm, preferably between about 45-70 mm with a side panel (e.g., panels other than 140B and 140B′ in some embodiments) width of no more than about 60 mm, preferably between about 30-50 mm. These dimensions, for example, advantageously allow the device to be compressed in one hand comfortably by a wide range of both male and female operators of the device 100. In some embodiments, the height and width (displacement) changes of a single panel axially could be no more than about 85 mm, preferably no more than about 20-25 mm and more preferably no more than about 10-15 mm. The height changes would correspond to a hand displacement 520 in FIG. 5 and the width changes would correspond to a hand displacement 510 in FIG. 5. A person of average skill in the art to which this invention pertains would readily appreciate that the geometry (dimensions and relative angles) of the panels could be varied to meet the desired height and width (displacement) changes as well as the desired deliverable tidal volume.

The length changes of a single panel axially could also be no more than about 85 mm but is, in some embodiments, not constrained by hand dimensions, but will be a variable in determining the change in volume. The change in enclosed volume of the device (in other words, the deliverable or expressed volume of a device) is typically no more than about 1400 cc in some embodiments. In other embodiments, the deliverable volume ranges from about 250 to 1200 cc, which covers tidal volume ranges for children and adults. When the device is used for infant or child purposes the volume changes are smaller and preferably are no more than about 500 cc. The maximum deliverable volume of a device can, in some embodiments, be adjusted in increments of at least about 25 cc, 50 cc, 75 cc, 100 cc, 125 cc, 150 cc, 200 cc, or more. The ability to configure the device to set an adjustable maximum deliverable tidal volume advantageously provides an increased level of safety and reduces the risk of excess volume delivery, and thus complications of volutrauma such as pneumothorax.

FIG. 6 shows an exploded view of an embodiment of a ventilation device. In addition to the elements discussed above, the device further includes a main shaft 610 connected to output mechanism 130 and positioned inside body 110. Main shaft 610 has narrow (cylindrical) end 612 and a slot 614. The device further has a receiving shaft 620 connected (or could be a single part) to input mechanism 630 and also positioned inside body 110. Receiving shaft 620 has an opening (not visible in figure) sized to allow travel of main shaft 610 along the length of receiving shaft 620. It further has a slot 622 preferably of equal size as slot 614; slots 614 and 622 should also be aligned with each other as will be understood when discussing volume recovery from compressed state to uncompressed state with respect to FIG. 8. Opening 630 could be sized such that element 660 could be mechanically assembled by ultrasonic welding, snap fit, press fit, adhesive or any other known techniques in the mechanical and design engineering art. Element 660 allows fitting and attachment of air/oxygen input devices. A flutter valve 640 is fitted to the front opening of element 660 allowing e.g. air travel into receiving shaft 620 through opening 650 and then into body 110. Element 660 further houses a size adjuster (also referred to as volume adjuster).

In general, the size adjuster of the device adjusts the length changes, width changes and/or height changes. The size adjuster serves the purpose of easily adjusting the deliverable volume so that the user can rely of a fairly constant volume of deliverable e.g. air, oxygen or oxygen-enriched air. Adjusting the deliverable volume is important to compensate for factors such as physical condition, body size, age, sex, etc.

In a preferred embodiment, size adjuster is integrated with input mechanism 120, in particular with element 660, and adjusts the travel length of body 110. The size adjuster distinguishes an adjustment knob 160 placed on top of element 660 and conveniently accessible to a user. The adjustment knob 160 is connected to an adjustment dial 162, which in this example is positioned inside element 660; the connection could e.g. be through either valve 670 or 680.

FIG. 7 shows adjustment dial 162 with a number of slots 710,712,714,716 and 718. These slots are sized to fit narrow (cylindrical) end 612 of main shaft 610 that is able to travel all the way through the opening of receiving shaft 620 (as well as through flutter valve 640; not shown in figure) when moving between uncompressed and compressed states. By changing adjustment knob 160, adjustment dial 162 is rotated around pivot 720 to a new slot position; this is typically done when the body is in compressed state. It is noted that size adjuster changes the dimension of the uncompressed state or volume.

Slots restrict the travel distance of main shaft 610 and therewith control the deliverable volume to an individual. Slot sizes could be up to no more than about 170 mm to allow changes in length, and preferably are no more than about 25 mm. The number of slots and the sizes of the slots are selected to cover a reasonable range of deliverable tidal volumes as a person of ordinary skill in the art will appreciate.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Volume-adjustable manual ventilation device patent application.
###
monitor keywords

Browse recent Artivent Corporation patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Volume-adjustable manual ventilation device or other areas of interest.
###


Previous Patent Application:
Mobile respirator
Next Patent Application:
Oxygen enrichment device
Industry Class:
Surgery
Thank you for viewing the Volume-adjustable manual ventilation device patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.73617 seconds


Other interesting Freshpatents.com categories:
Nokia , SAP , Intel , NIKE ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2--0.7427
Key IP Translations - Patent Translations

     SHARE
  
           

stats Patent Info
Application #
US 20120272965 A1
Publish Date
11/01/2012
Document #
13482848
File Date
05/29/2012
USPTO Class
12820514
Other USPTO Classes
International Class
61M16/08
Drawings
36


Your Message Here(14K)



Follow us on Twitter
twitter icon@FreshPatents

Artivent Corporation

Browse recent Artivent Corporation patents

Surgery   Respiratory Method Or Device   Means For Supplying Respiratory Gas Under Positive Pressure   Respiratory Gas Supplied From Expandable Bag, Bellows, Or Squeeze Bulb   Means For Adjusting Gas Volume Delivered To User From Bag, Bellows, Or Bulb During Inflation-deflation Cycle