FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: August 12 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Apparatus for obtaining and analyzing a blood sample with a lancet coupling mechanism

last patentdownload pdfdownload imgimage previewnext patent


20120271126 patent thumbnailZoom

Apparatus for obtaining and analyzing a blood sample with a lancet coupling mechanism


An apparatus for obtaining and analyzing a blood sample is presented. The apparatus comprises an integrated drive unit having a common drive source and a drive force transmission gearing that couples a lancet drive, a device for advancing a magazine, and a sample transfer device to the drive source. A tensioning rotor and a drive rotor are mounted so that they are rotatable coaxially to one another. A first cam control converts the rotation of the drive rotor into a radial forward and reverse movement of a drive rod. A second cam control converts the rotational movement of the tensioning rotor into a linear movement of a link slide. A switching link moved by the link slide rotates the magazine an additional step. A third cam control converts the rotational movement of the tensioning rotor into a linear movement of a pressure tappet perpendicular to the piercing axis.
Related Terms: Lancet

Inventors: Hans List, Kai Fluegge
USPTO Applicaton #: #20120271126 - Class: 600309 (USPTO) - 10/25/12 - Class 600 
Surgery > Diagnostic Testing >Measuring Or Detecting Nonradioactive Constituent Of Body Liquid By Means Placed Against Or In Body Throughout Test

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120271126, Apparatus for obtaining and analyzing a blood sample with a lancet coupling mechanism.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of PCT/EP2010/005416, filed Sep. 3, 2010, which is based on and claims priority to EP 09012895.0, filed Oct. 13, 2009, which is hereby incorporated by reference.

BACKGROUND

The present disclosure generally relates to an apparatus for obtaining and analyzing a blood sample and, in particular, to an apparatus for obtaining and analyzing a blood sample having a lancet coupling mechanism.

Patients with metabolic diseases typically must regularly analyze their blood. Especially diabetics are instructed to regularly check the blood sugar level. For this purpose, a small wound is generated by means of a lancet, preferably on a fingertip. A small sample is then collected from the exiting blood and transferred to a test element in order to be analyzed.

In more recent times, small, automatically operating, handheld devices have been developed, which contain a magazine having a plurality of lancets implemented as disposable articles and a corresponding number of test elements. The analysis of the blood sample is performed by an integrated measuring device. Such highly integrated devices have an advantage that the patient only needs to carry a single apparatus that can perform a number of tests identically before the consumable material needs to be replaced.

The design requirements for a small hand-held apparatus that anyone can perform an automatic blood sugar test can be extraordinarily demanding since the device needs to be as small and light as possible. It should be able to be operated so easily and comfortably that a blood sugar test can be performed anywhere and as inconspicuously as possible. Of course, absolute reliability should be expected from a medical apparatus. Since diabetes is widespread disease, the manufacturing costs should remain low for a mass-produced product.

For a fully automatically operating blood sugar test device, a special drive mechanism may be required to execute various and highly differing movements. These movements may include the rapid piercing movement of the lancet and the subsequent retraction movement, the advancing of the magazine to bring an unused lancet into functional position, the coupling of a fresh lancet and the decoupling of the used lancet, and kinematics that transfer of the blood sample from the lancet to the test element.

Therefore, there is a need for an apparatus for obtaining and analyzing a blood sample that is compact and light with very high mechanical reliability and the least possible energy demand.

SUMMARY

According to the present disclosure, an apparatus for obtaining and analyzing a blood sample is disclosed. The apparatus can comprise a housing, a contact device provided on the housing for pressing against a body part from which the blood sample is to be taken, and a magazine movably mounted on the housing. The magazine can comprise a plurality of lancets. Each lancet can pierce the body part and retract from the body part to receive the blood sample exiting the pierced body part. The apparatus further comprises a device for advancing the magazine to bring a lancet into a functional position and a lancet drive having a drive rod coupled to the lancet located in the functional position. The lancet drive can execute a controlled piercing movement along a piercing axis. Test elements can be assigned to the lancets. Each test element can receive the blood sample in order to analyze the blood sample. The apparatus also can comprise an integrated drive unit comprising the lancet drive, the device for advancing the magazine, and a device for generating a sample transfer movement perpendicular to the piercing axis.

In accordance with one embodiment of the present disclosure, the apparatus can comprise a lancet coupling mechanism. The lancing coupling mechanism can comprise at least one chamber that extends in the direction of the piercing axis and comprises a lancet, a drive rod that penetrates into the chamber and is coupled to the lancet to execute a controlled forward and reverse movement along the piercing axis. The lancet can be elastically bendable around at least one bending axis extending transversely to the piercing axis. The chamber can comprise a shaft adapted to the cross section of the lancet. The shaft can have at least one curvature around an axis transverse to the piercing axis. The drive rod can be coupled to the lancet when the lancet is in the bent state. The drive rod can have a formfitting connection to the lancet when the lancet is in a relaxed state.

Accordingly, it is a feature of the embodiments of the present disclosure to an apparatus for obtaining and analyzing a blood sample that is compact and light with very high mechanical reliability and the least possible energy demand. Other features of the embodiments of the present disclosure will be apparent in light of the description of the disclosure embodied herein.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:

FIG. 1 illustrates an apparatus for obtaining and analyzing a blood sample in a simplified perspective view according to an embodiment of the present disclosure.

FIG. 2 illustrates the drive unit of the apparatus of FIG. 1 in perspective with an enlarged scale according to an embodiment of the present disclosure.

FIG. 3a illustrates a view from below of the tensioning rotor of the drive unit of FIG. 2 according to an embodiment of the present disclosure.

FIG. 3b illustrates a view from above of the tensioning rotor of the drive unit of FIG. 2 according to an embodiment of the present disclosure.

FIG. 4 illustrates the tensioning rotor from above according to an embodiment of the present disclosure.

FIG. 5a illustrates the drive rotor of the drive unit of FIG. 2 from above according to an embodiment of the present disclosure.

FIG. 5b illustrates the drive rotor of the drive unit of FIG. 2 from below according to an embodiment of the present disclosure.

FIG. 6 illustrates a part of the apparatus of FIG. 1 having an inserted magazine in an enlarged perspective view with vertical section in the radial direction through the rotational axis according to an embodiment of the present disclosure.

FIG. 7a illustrates the magazine of the apparatus of FIG. 1 with lancet in a simplified perspective view in longitudinal section through a chamber according to an embodiment of the present disclosure.

FIG. 7b illustrates the magazine according to FIG. 7a with lancet and drive rod of the drive unit of FIG. 2 according to an embodiment of the present disclosure.

FIG. 8 illustrates the drive rod of FIG. 7b, in a greatly enlarged perspective view according to an embodiment of the present disclosure.

FIGS. 9a-d schematically illustrate the procedure of coupling the drive rod onto a lancet according to an embodiment of the present disclosure.

FIG. 10 illustrates an alternative embodiment of the lancet according to an embodiment of the present disclosure.

FIG. 11 illustrates an alternative embodiment of a lancet coupling mechanism according to an embodiment of the present disclosure.

DETAILED DESCRIPTION

In the following detailed description of the embodiments, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration, and not by way of limitation, specific embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present disclosure.

One aspect of this disclosure is an integrated drive unit that comprising a lancet drive, a device for advancing the magazine, and a device for generating a sample transfers movement substantially perpendicular to the piercing axis. The drive unit not only drives the lancet but also can ensure the advancing of the magazine at the end of a test cycle and can additionally be capable of generating a movement substantially perpendicular to the piercing axis, which can be used for the purpose of transferring the received blood sample from the lancet to an assigned test element because the lancet and the test element can be pressed against one another. A force can be exerted substantially perpendicular to the piercing axis. In addition, the sample transfer movement can comprise further movement sequences such as the test element and the lancet can be moved relative to one another. However, these movement sequences do not necessarily need to be perpendicularly to the piercing axis but rather can comprise a movement component parallel to the piercing axis, for example.

The aspect of a single drive unit for all mechanical movements needed for performing a test cycle can have many advantages. The device can be more compact and therefore lighter. In addition, the device can operate more reliably and effectively. Finally, the device may be produced cost-effectively.

In one embodiment, the integrated drive unit can have a single common drive source for delivering the force for the lancet drive, advancing the magazine, and the sample transfer movement. The drive source can be coupled to the lancet drive, the device for advancing the magazine, and the device for generating the sample transfer movement by a drive force transmission gearing. In particular, a rotor can be used as the central element of such a drive force transmission gearing. The rotor can transmit the force of the drive source selectively to the lancet drive, the device for advancing the magazine, and the device for generating the sample transfer movement as a function of the rotational angle. The movements needed for piercing, for advancing the magazine, and for sample transfer can be generated from rotational movements around a common axis.

The fact that the force of the central drive source does not directly generate the final needed required translational movements, but rather first sets a rotor into rotation, can result in a natural rotational angle range of 360° to be available so that in the course of a full rotation of the rotor to couple the drive source successively to the lancet drive, the device for advancing the magazine, or the device for generating the sample transfer movement.

It is generally known that the lancet drive should execut a rapid piercing movement in the direction of the body part which is to be pierced and a rapid subsequent retraction movement, at least at the beginning. In comparison, the remaining movements that are required for advancing the magazine, for coupling and decoupling the lancet, and for transferring the blood sample from the lancet to the test element, are relatively slow. For this purpose, the drive unit can advantageously comprises a drive rotor whose rotation is converted by a first cam control into a radial forward and reverse movement of the lancet, a coaxial tensioning rotor, a drive spring acting between drive rotor and tensioning rotor, and also a stepping switch mechanism having a second cam control that converts the rotational movement of the tensioning rotor into a linear movement for advancing the magazine, as well as a test element coupling device having a third cam control that converts the rotational movement of the tensioning rotor into a linear movement of a contact pressure element perpendicular to the piercing axis. According to one embodiment, only the tensioning rotor can be directly frictionally coupled to the central drive source via the drive force transmission gearing. A rotation of the tensioning rotor is converted by the cam controls either into a linear movement for advancing the magazine or into a linear movement of a contact pressure element perpendicular to the piercing axis. The slow movements may thus be implemented. The rapid piercing movement of the lancet can occur if the drive spring was previously tensioned, by rotating the tensioning rotor in relation to the drive rotor, and released to trigger the piercing. In this manner, it can be possible to adapt the drive source primarily to the slow movements of the magazine, the lancet coupling mechanism, and the device for blood sample transfer. The substantially more rapid piercing movement can be triggered by the tension force of the drive spring. Because the tensioning rotor can be used as the central element of the drive force transmission gearing, it can be possible to cause all movements of the drive mechanism to arise from a single common drive source.

An electric motor can be suitable for the drive source where the speed can optionally be stepped down by means of a worm gearing sufficiently so that the rotational movement of the tensioning rotor can be sufficiently controlled precisely. However, any other moving drive element which delivers a mechanical drive force, such as a spring mechanism for example, can also be used. The drive source can also comprise an energy accumulator.

Another aspect of the present disclosure is a lancet coupling. The flexibility of the lancet in conjunction with the curved chamber can result in the lancet stored in the chamber can be elastically bent with the curvature of the chamber. Because of the bending tension, the lancet can be clamped in the chamber. The lancet can thus press against the wall of the chamber with spring force. This can have the advantage that the lancet in the chamber can remain in position even if the chamber is moved or shocks are exerted thereon. Rattling noises during the transport and handling of the device can be prevented.

If the lancet is withdrawn from the curved chamber along the piercing axis, it can relax and reassume its original shape. The elastic deformation of the lancet during the transition from the bent state into the relaxed state and vice versa can be used to couple the drive rod to the lancet. The drive rod can be coupled onto the lancet when the lancet is in the bent state. In contrast, if the lancet is in the relaxed state outside the chamber, the drive rod can have a formfitting connection to the lancet. A controlled piercing movement can now be executed along the piercing axis. The form fit between drive rod and lancet can also allow the lancet to be retracted again after the piercing. If the lancet is retracted sufficiently far enough that it enters the curved shaft of the chamber again, the lancet can again bend elastically. The formfitting connection between lancet and drive rod may thus be disengaged again.

To produce the formfitting connection in the relaxed state, the lancet can have a coupling recess and the drive rod can have a coupling structure on its front end that can extend perpendicular to the bending axis of the lancet and that can engage in the coupling recess of the bent lancet. If the lancet is withdrawn from the chamber, the coupling recess can move on a circular path around the bending axis. In contrast, the coupling structure can only move in the direction of the piercing axis. During synchronous movement of drive rod and lancet in the direction of the piercing axis, a relative movement can result between the coupling recess and the coupling structure in a direction perpendicular to the piercing axis. The coupling recess therefore can automatically engage with the coupling structure.

The lancet can be manufactured simply from a piece of level flat sheet metal. It can have an eye in a rear area. The drive rod can have a correspondingly implemented hook in a front end, which can hook into the eye of the lancet. The lancets, of which large quantities may be required, can be produced very simply and cost-effectively, for example, by stamping. It may only be necessary to select a sufficiently elastic material, such as, for example, sheet steel. The eye should be sufficiently wide that the hook at the front end of the drive rod can be hooked on. In one embodiment, the lancets can be approximately 1 mm wide. The chamber for accommodating the lancet can be implemented as correspondingly narrow.

A plurality of chambers may be positioned adjacent to one another in a circular magazine, the shafts of the chambers extending in the radial direction. By rotating the magazine, one of the chambers may be brought into a position in which the drive rod can penetrate into the chamber and can couple onto the lancet located into the chamber. Such an arrangement of the chambers in a flat ring magazine allows the construction of a very compact handheld device having low overall height, above all if a rotor drive is positioned coaxially in the middle of the ring magazine.

In one embodiment, the magazine can comprise a lower part and an upper part which can form the chambers. The lancets may thus be laid in the relaxed state in the still open chambers. As soon as the upper part is put on, the lancets can be forced into the curvatures of the resulting shafts and can no longer slip out of their predefined position inside the magazine without force from the outside. All chambers of the magazine can be filled simultaneously with lancets in one work step and the bending of the lancets which is required for the function of the lancet coupling mechanism can be generated by simply pressing on the magazine upper part.

Referring now to FIG. 1, the load-bearing element of the apparatus can be a base plate 1. The housing can comprise an upper cover 2 can be installed on the base plate 1. A round receptacle 3 can be provided on the upper side on which a magazine 4 in the form of a circular ring can be placed. This magazine 4 can comprise a plurality of chambers 5 in each of which a lancet is stored. The chambers 5 can be positioned adjacent to one another and can extend in the radial direction. The magazine 4 can also comprise a plurality of test elements assigned to the chambers 5.

The front side of the housing can be formed by a contact pressure bow 6. A fixation ring 7 with an opening 8 can be positioned approximately in the middle of the contact pressure bow 6. The fixation ring 7 can be used for the contact pressure of a body part, such as a fingertip, from which a blood sample is to be taken. The fingertip can protrude somewhat into the opening 8. One of the lancets stored in the magazine 4 can pierce through the opening 8 into the fingertip and can be retracted again to get a sample of the blood from the puncture wound.

The lancet drive can be concealed under the cover 2. Only the front end of a drive rod 9, is visible through a rectangular exit opening 10 in the cover 2 in FIG. 1. In operation, when the magazine 4 is positioned in the receptacle 3, the drive rod 9 can emerge from the opening 10 and penetrate the rear of a chamber 5 of the magazine 4 to drive the lancet stored therein forward in the direction of the opening 8 and subsequently withdraw the lancet again along the piercing axis into the chamber 5. The blood sample can be transferred to a test element for analysis.

The lancets and test elements stored in the magazine 4 are intended for a single use. After obtaining and analyzing a blood sample, the magazine 4 can be rotated around its axis to move a fresh lancet into the functional position. The device for advancing the magazine 4 can be located below the cover 2. A link slide 11 can cooperate with pins provided on the lower side of the magazine 4 in order to convert a movement of the link slide 11 in the radial direction into a rotation of the magazine 4 around its rotational axis.

A device 12 for generating a sample transfer movement perpendicular to the piercing axis can be seen below the contact pressure bow 6. This device 12 can be used to transfer the blood sample received by the lancet onto an assigned test element in the magazine 4 since that the lancet and the test element can be pressed against one another.

The details of the drive unit can be seen in FIG. 2. A lancet 13 can be located in the functional position in front of the drive rod 9. An electric motor 15 can be fastened on the base plate 1 and can be supplied with power by a battery. A worm shaft 16, which can be meshed with a worm wheel 17, can be positioned on the shaft of the electric motor 15. The speed of the electric motor 15 can be stepped down strongly. Further gearwheels, which can be partially located below the base plate 1, can transmit the drive force of the electric motor 15 to a tensioning rotor 18 mounted so it can be rotatable around a perpendicular rotational axis 19 on the base plate 1. A drive rotor 20 can be mounted so it is rotatable around the same rotational axis 19 and therefore coaxially to the tensioning rotor 18. Tensioning rotor 18 and drive rotor 20 can be connected so they are rotationally movable via a coiled spring. This coiled spring can be used as the drive spring of the lancet drive.

If the tensioning rotor 18 is set into rotation by the electric motor 15 while the coaxial drive rotor 20 is stationary, the drive spring can be tensioned. If the drive rotor 20 is then released, it runs behind the tensioning rotor 18 under the action of the relaxing drive spring. This rapid rotation of the drive rotor 20 can be converted by a cam control into a radial forward and reverse movement of a piercing carriage 21. The piercing carriage 21 can carry a drive rod 9 which can be coupled onto a lancet.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Apparatus for obtaining and analyzing a blood sample with a lancet coupling mechanism patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Apparatus for obtaining and analyzing a blood sample with a lancet coupling mechanism or other areas of interest.
###


Previous Patent Application:
Medical sensor kit for combination with a chair to enable measurement of diagnostic information
Next Patent Application:
Devices and methods for delivery and/or withdrawal of fluids and preservation of withdrawn fluids
Industry Class:
Surgery
Thank you for viewing the Apparatus for obtaining and analyzing a blood sample with a lancet coupling mechanism patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.60557 seconds


Other interesting Freshpatents.com categories:
QUALCOMM , Monsanto , Yahoo , Corning ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2--0.7539
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120271126 A1
Publish Date
10/25/2012
Document #
13445584
File Date
04/12/2012
USPTO Class
600309
Other USPTO Classes
International Class
/
Drawings
12


Lancet


Follow us on Twitter
twitter icon@FreshPatents