FreshPatents.com Logo
stats FreshPatents Stats
1 views for this patent on FreshPatents.com
2012: 1 views
Updated: October 13 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Metal delivery agents and therapeutic uses of the same

last patentdownload pdfdownload imgimage previewnext patent


20120270850 patent thumbnailZoom

Metal delivery agents and therapeutic uses of the same


The present invention relates to metal complexes, processes for their preparation and their use as pharmaceutical or veterinary agents, in particular for the treatment of conditions in which metal delivery can prevent, alleviate or ameliorate the condition. There are a number of clinical conditions which are caused by or associated with abnormal levels of metals (typically low metal levels). Conditions in of this type include cancer and conditions characterised by or associated with oxidative damage, more specifically neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease or Huntington's disease. The invention also relates to ligands useful in the preparation of metal complexes of this type.

Browse recent University Of Medlbourne patents - Victoria, AU
Inventors: Kevin Jeffrey Barnham, Paul Stephen Donnelly, Anthony Robert White
USPTO Applicaton #: #20120270850 - Class: 514184 (USPTO) - 10/25/12 - Class 514 
Drug, Bio-affecting And Body Treating Compositions > Designated Organic Active Ingredient Containing (doai) >Heterocyclic Carbon Compounds Containing A Hetero Ring Having Chalcogen (i.e., O,s,se Or Te) Or Nitrogen As The Only Ring Hetero Atoms Doai >Heavy Metal Containing (including Salts)

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120270850, Metal delivery agents and therapeutic uses of the same.

last patentpdficondownload pdfimage previewnext patent

FIELD OF THE INVENTION

The present invention relates to the use of metal complexes as pharmaceutical or veterinary agents, in particular for the treatment of conditions in which metal delivery can prevent, alleviate or ameliorate the condition. There are a number of clinical conditions which are caused by or associated with abnormal levels of metals (typically low metal levels). Conditions in of this type include cancer and conditions characterised by or associated with oxidative damage, more specifically neurodegenerative conditions such as Alzheimer\'s disease, Parkinson\'s disease or Huntington\'s disease.

BACKGROUND OF THE INVENTION

The life span is thought to be biologically fixed for each species, and the length of the human life span is uncertain, but may be up to 120 years. Since life expectancy has risen significantly in this century, the elderly are an increasing segment of our population, and their health care needs will continue to grow for decades.

Bio-available metal ions play crucial roles in a number of important biological processes. It is estimated that one-third of all proteins are metalloproteins (proteins containing a tightly bound metal ion) and therefore a number of biologically important processes are impaired if bio-available metal levels are either elevated or suppressed. In addition even if there are adequate levels of bio-available metal in a biological system it is important that its distribution in the biological system be such that the biological processes that rely on the presence of the metal function appropriately.

Whilst there is a wide range of ways in which bio-available metals impact on biological systems, two of the better known would be the role of metals in enzyme systems and the role of metals in signaling mechanisms within biological systems. Examples of the role of metals in biological processes include the potential importance of Zn in the R-amyloid plaques of Alzheimer\'s disease; the effect of the (Cu, Zn) superoxide dismutase enzyme in mediating reactive oxygen species damage associated with amyotrophic lateral sclerosis; the participation of the heme enzymes NO synthase and guanylyl cyclase in the production and sensing, respectively, of nitric oxide (NO), and the discovery of a “zinc-finger” motif in the breast and ovarian cancer susceptibility gene, BRCA1 merely by way of example. It is also known that Cu plays a role in XIAP activity which modulates caspase activity which in turn controls apoptosis. Apopotosis is a process of controlled cell death and dysregulation of this process has been implicated in many disease states.

A large percentage of newly discovered enzymes and proteins also contain metal ions at their active sites and variations in metal levels can significantly interfere with the functioning of these enzymes and proteins. Metalloenzymes of this type are involved in a number of important bio catalytic processes including reduction of excess oxygen species. Accordingly whenever there is either too high or too low a level of metals present in a biological system either too high a level or too low a level the normal biological processes are interrupted, typically leading to undesirable consequences. This typically occurs as many of the crucial enzymatic processes that provide protection in the biological system are suppressed or inactivated leading to undesirable consequences.

As a result of the importance of metals in the biological environment, research conducted into the roles of metals in biological systems have identified a number of conditions which are caused by or associated with abnormal levels of metal in the biological environment. In respect of these conditions they are all typically ones in which metal delivery can prevent, alleviate or ameliorate the condition. An example of a condition of this type is oxidative stress which is related to abnormal metal levels as many of the protective enzymes responsible for alleviating oxidative stress are deactivated if biological metal levels are too low.

Research in the last few decades has identified that there are a number of conditions that are caused by or associated with oxidative stress placed on the body. For example a number of cardiovascular conditions have been identified that are the result of oxidative stress (OS). Other conditions associated with OS include cancer, cataracts, neurodegenerative disorders such as Alzheimer\'s disease and heart diseases. In addition, there\'s evidence that OS plays a prominent role in three types of neuromuscular disorders: amyotrophic lateral sclerosis (ALS), mitochondrial/metabolic disease and Friedreich\'s ataxia.

The effect of OS is not limited to any one part of the human body, with examples of the negative effects of OS being observed for almost all organs. For example, the human brain is an organ that concentrates metal ions and recent evidence suggests that a breakdown in metal homeostasis plays a critical role in a variety of age-related neurodegenerative diseases. Common features of these diseases include the deposition of misfolded protein (each disease can have its own specific amyloid protein) and substantial cellular damage as a result of OS. Significant data suggests that OS is the primary cause of physical damage in a wide range of disease states, including amyloidogenic neurological disorders such as Alzheimer\'s disease (AD), amylotrophic lateral sclerosis (ALS), prion diseases—including Creutzfeldt-Jakob Disease (CJD), transmissible spongioform encephalopathies (TSE), cataracts, mitochondrial disorders, Menke\'s disease, Parkinson\'s disease (PD) and Huntington\'s disease (HD). [Bush, 2000 (Curr Opin Chem. Biol. 2000 April; 4(2):184-91)].

In this regard it is notable that Copper metal ion deficiency has been reported as a condition associated with AD. Copper is an essential element that is required for many enzymes to function properly, particularly those enzymes that maintain a balance in antioxidant/pro-oxidant homeostasis such as superoxide dismutase and cytochrome C oxidase. One consequence of copper deficiency is that the protective enzymes responsible for detoxifying reactive oxygen species (ROS) are inadequately loaded with copper and therefore do not effectively carry out normal enzyme function. The inadequate loading of such protective enzymes, for example in the brain, leads to a general increase in OS (as is observed in AD) which will be reflected in increased protein oxidation, such as increased protein carbonyls.

A number of therapeutic agents have been developed in an attempt to provide therapeutic solutions to the conditions caused by or associated with OS as discussed above with varied results. In general, in order to lower OS levels, various antioxidants are being used. The most common are vitamin E and vitamin C. However, vitamin E was found to be ineffective at decreasing the oxidative stress at the substantia nigra (The Parkinson Study Group, 1993, Offen et al., 1996) since this compound, although capable of crossing the blood brain barrier, is trapped in the cell membrane and therefore does not reach the cytoplasm where its antioxidant properties are needed. Vitamin C also does not cross the blood brain barrier and therefore, cannot be used effectively for neurodegenerative diseases of central origin.

There is thus still a need for, and it would be highly advantageous to have novel antioxidant compounds and methods for use of antioxidants in treatment of disease associated with oxidative damage and particularly central nervous system neurodegenerative disorders such as PD, AD and CJD. Treatment is further desirable for and in treating conditions of peripheral tissues, such as acute respiratory distress syndrome, ALS, atherosclerotic cardiovascular disease and multiple organ dysfunction. During such treatment the complexes can act as oxygen scavengers to lower the OS within and in the vicinity of affected cells and this treatment eventually stops cell death which is associated with OS in the brain and/or peripheral tissues.

The present invention is therefore based on the finding that certain metal complexes are effective in delivering bio-available metal and could thus be used in the treatment of conditions which can be prevented, treated or ameliorated by metal delivery. In certain conditions it is desirable that the metal be released in the cell such that after metal delivery the metal is present in the form of the free cation and it is the free cation that leads to the observed biological activity. In respect of other conditions it is desirable that the metal stay in the form of the bound complex even after metal delivery and with these conditions it is the bound form of the metal (the metal complex) that is biologically active in the cell.

In particular these complexes were found to be effective in delivering metal to the cells in a form which lead to a significant anti-oxidant effect being observed in the cell. Thus, certain metal complexes demonstrated an ability to mediate OS.

All references, including any patents or patent applications, cited in this specification are hereby incorporated by reference. No admission is made that any reference constitutes prior art. The discussion of the references states what their authors assert, and the applicants reserve the right to challenge the accuracy and pertinency of the cited documents. It will be clearly understood that, although a number of prior art publications are referred to herein, this reference does not constitute an admission that any of these documents forms part of the common general knowledge in the art, in Australia or in any other country.

SUMMARY

OF THE INVENTION

In one aspect the invention provides a method of treatment or prophylaxis of a condition in a subject in which metal delivery can prevent, alleviate or ameliorate the condition, the method including administration of a therapeutically effective amount of a metal complex of Formula (I).

wherein M is a divalent metal;

R1 and R2 are each independently selected from the group consisting of: H, alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, hydroxy, hydroxyalkyl, alkoxy, —N═R7, —NH(R7), —N(R7)2, —COOH, —COR7, —COOR7, —CONHR7, —CSNHR7, —S(O)R7, —S(O)2R7, —C(O)N(R7)2, —SO2N(R7)2, —(CH2)mR8 and acyl, each of which may be optionally substituted; or

R1 and R2 when taken together to the nitrogen atom to which they are attached form an optionally substituted heterocycloalkyl or heteroaryl group;

R3 and R4 are each independently selected from the group consisting of: H, alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, each of which may be optionally substituted;

or R3 and R4 when taken together with the carbon atoms to which they are attached form an optionally substituted cycloalkyl group;

R5 and R6 are each independently selected from the group consisting of: H, alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, hydroxy, hydroxyalkyl, alkoxy, —N═R7, —NH(R7), —N(R7)2, —COOH, —COR7, —COOR7, —CONHR7, —CSNHR7, —S(O)R7, —S(O)2R7, —C(O)N(R7)2, —SO2N(R7)2, —(CH2)mR8 and acyl, each of which may be optionally substituted; or

R5 and R6 when taken together to the nitrogen atom to which they are attached form an optionally substituted heterocycloalkyl or heteroaryl group;

each R7 is independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, haloalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, cycloalkylalkyl, heterocycloalkylalkyl, arylalkyl, heteroarylalkyl, and acyl, each of which may be optionally substituted;

each R8 is independently selected from the group consisting of cycloalkyl, heterocycloalkyl, aryl, and heteroaryl, each of which may be optionally substituted;

m is an integer selected from the group consisting of 1, 2, 3, 4, 5 and 6.

In one embodiment the condition is selected from the group consisting of tau related disorders, disorders caused by or associated with oxidative stress in a subject, and Abeta related disorders. In one specific embodiment the condition is caused by or associated with oxidative stress in the subject. In another specific embodiment the condition is a tau related disorder, particularly a tau related neurodegenerative disorder. In another aspect the condition is an Abeta related disorder.

In a further aspect the invention provides the use of a metal complex of formula (I) in the preparation of a medicament for the treatment or prophylaxis of a condition in which metal delivery can prevent, alleviate or ameliorate the condition. In one embodiment the condition is selected from the group consisting of tau related disorders, disorders caused by or associated with oxidative stress in a subject, and Abeta related disorders. In one specific embodiment the condition is caused by or associated with oxidative stress in the subject. In another specific embodiment the condition is a tau related disorder, particularly a tau related neurodegenerative disorder. In another aspect the condition is an Abeta related disorder.

In one form of each of these two aspects the condition is selected from the group consisting of cardiovascular disease, central nervous system disorders, cancers and neurological disorders.

Examples of conditions of this type include conditions selected from the group consisting of acute intermittent porphyria; adriamycin-induced cardiomyopathy; AIDS dementia and HIV-1 induced neurotoxicity; Alzheimer\'s disease; amylotrophic lateral sclerosis; atherosclerosis; cataract; cerebral ischaemia; cerebral palsy; cerebral tumour; chemotherapy-induced organ damage; cisplatin-induced nephrotoxicity; coronary artery bypass surgery; Creutzfeldt-Jacob disease and its new variant associated with “mad cow” disease; diabetic neuropathy; Down\'s syndrome; near drowning; epilepsy and post-traumatic epilepsy; Friedrich\'s ataxia; frontotemporal dementia; glaucoma; glomerulopathy; haemochromatosis; haemodialysis; haemolysis; haemolytic uraemic syndrome (Weil\'s disease); Menke\'s disease; haemorrhagic stroke; Hallerboden-Spatz disease; heart attack and reperfusion injury; Huntington\'s disease; Lewy body disease; intermittent claudication; ischaemic stroke; inflammatory bowel disease; macular degeneration; malaria; methanol-induced toxicity; meningitis (aseptic and tuberculous); motor neuron disease; multiple sclerosis; multiple system atrophy; myocardial ischaemia; neoplasia; Parkinson\'s disease; peri-natal asphyxia; Pick\'s disease; progressive supra-nuclear palsy; radiotherapy-induced organ damage; restenosis after angioplasty; retinopathy; senile dementia; schizophrenia; sepsis; septic shock; spongiform encephalopathies; subharrachnoid haemorrage/cerebral vasospasm; subdural haematoma; surgical trauma, including neurosurgery; thalassemia; transient ischaemic attack (TIA); transplantation; vascular dementia; viral meningitis; and viral encephalitis.

In one specific embodiment the condition is a neurological disorder. In one form of this embodiment the neurological disorder is selected from the group consisting of Parkinson\'s disease, Alzheimer\'s disease, Multiple sclerosis, Neuropathies, Huntington\'s disease, Prion disease, motor neurone disease, Amyotrophic lateral sclerosis (ALS) and Menke\'s disease. In a specific embodiment the disorder is Alzheimer\'s disease. In a specific embodiment the disorder is Parkinson\'s disease. In a specific embodiment the disorder is Amyotrophic lateral sclerosis (ALS).

In a further aspect the invention provides a method of prophylaxis or treatment of oxidative stress including administering a therapeutically effective amount of a metal complex of formula (I) to the subject.

In a further aspect the invention provides the use of a metal complex of formula (I) in the preparation of a medicament for the treatment or prophylaxis of OS.

In an even further aspect the invention provides a method of protecting a cell from OS the method including exposing the cell to an effective amount of a metal complex of formula (I). In one embodiment the cell is a cell in a subject and exposing the cell to the metal complex includes administering the metal complex to the subject.

In an even further aspect the invention provides a method of prophylaxis or treatment of a tau related disorder the method including administering a therapeutically effective amount of a metal complex of formula (I) to the subject. In one embodiment the tau related disorder is a neurodegenerative disorder.

In a further aspect the invention provides the use of a metal complex of formula (I) in the preparation of a medicament for the treatment or prophylaxis of a tau related disorder.

In yet an even further aspect the invention provides a method of reducing or preventing the effects of Abeta on a cell the method including exposing the cell to an effective amount of a metal complex of the formula (I). In one embodiment the cell is a cell in a subject and exposing the cell to the metal complex includes administering the metal complex to the subject.

In yet an even further aspect the invention provides a method of prophylaxis or treatment of an Abeta related disorder the method including administering a therapeutically effective amount of a metal complex of formula (I) to the subject.

In yet a further aspect the present invention provides a method of phosphorylation of a kinase in a cell, the method including exposing the cell to a metal complex of Formula (I) as described above. In one embodiment the kinase is a receptor tyrosine kinase. In a specific embodiment the receptor tyrosine kinase is epidermal growth factor receptor (EGFR). In another specific embodiment the kinase is selected from the group consisting of ERK, PI3K, Akt, GSK3 and JNK.

A common feature of the methods and uses as outlined above is the use of a metal complex of formula (I). In one embodiment of the aspects described above the metal complex is sufficiently stable that upon administration to the subject the metal is not released in the extracellular environment but rather is released in the cells of the subject. This is preferable as it ensures that the metal is delivered to the cells of the subject rather than being released prior to delivery to the cells. In embodiments where the metal is released from the complex in the cell it is therefore present in the cell as the free cation and it is the free cation that is responsible for the biological activity in the subject. In another embodiment the metal complex does not release the metal in the extracellular matrix nor does it release the metal in the cell rather it is the metal complex that leads to the observed biological activity. Modifications to the metal complex either through changes in the nature of the metal or changes in the nature of the ligand may be made to obtain the desired delivery of the metal to the cells of the subject.

In one embodiment of the complex used in the aspects of the invention described above the metal is selected from the group consisting of Iron, Nickel, Palladium, Cadmium, Manganese, Cobalt, Copper and Zinc. In another embodiment the metal is Copper or Zinc. In one specific embodiment the metal is Copper. In another specific embodiment the metal is Zinc.

In one embodiment of the complex used in the aspects of the invention described above the complex is symmetrical. In another embodiment of the complex used in the aspects of the invention described above the complex is asymmetrical.

In one embodiment of the complex used in the aspects of the invention described above R1 is selected from the group consisting of H, alkyl and aryl, each of which may be substituted. In another embodiment R1 is selected from the group consisting of H, methyl, ethyl and phenyl. In one specific embodiment R1 is H.

In one embodiment of the complex used in the aspects of the invention described above R2 is selected from the group consisting of H, alkyl, aryl, and —(CH2)mR8, each of which may be optionally substituted. In one embodiment m is 1 or 2. In one embodiment R8 is aryl or heterocycloalkyl, each of which may be optionally substituted.

In a specific embodiment R8 is phenyl, or morpholin-4-yl. In further specific embodiment R2 is selected from the group consisting of H, methyl, ethyl, phenyl-methyl, 2-morpholin-4-yl-ethyl, phenyl, 4-chloro-phenyl and 4-methoxy-phenyl.

In one embodiment of the complex used in the aspects of the invention described above R3 is selected from the group consisting of H, methyl, ethyl and phenyl. In one specific embodiment R3 is H. In another specific embodiment R3 is methyl.

In one embodiment of the complex used in the aspects of the invention described above R4 is selected from the group consisting of H, methyl, ethyl and phenyl. In one specific embodiment R4 is H. In another specific embodiment R4 is methyl.

In one embodiment of the complex used in the aspects of the invention described above R3 and R4, when taken together with the carbon atoms to which they are attached form an optionally substituted cycloalkyl group. In one specific embodiment the cycloalkyl group is a cyclohexyl group. In another specific embodiment of the complex used in the invention R3 and R4 are both H.

In one embodiment of the complex used in the aspects of the invention described above R5 is selected from the group consisting of H, alkyl and aryl, each of which may be substituted. In another embodiment R5 is selected from the group consisting of H, methyl, ethyl and phenyl. In one specific embodiment R5 is H.

In one embodiment of the complex used in the aspects of the invention described above R6 is selected from the group consisting of H, alkyl, aryl, and —(CH2)mR8, each of which may be optionally substituted. In one embodiment m is 1 or 2. In one embodiment R8 is aryl or heterocycloalkyl, each of which may be optionally substituted.

In a specific embodiment R8 is phenyl, or morpholin-4-yl. In further specific embodiment R6 is selected from the group consisting of H, methyl, ethyl, phenyl-methyl, 2-morpholin-4-yl-ethyl, phenyl, 4-chloro-phenyl and 4-methoxy-phenyl.

In one preferred embodiment of the complex used in the aspects of the invention described above the metal complex increases phosphoinositol-3-kinase (PI3K)-Akt activity in the subject. In another preferred embodiment the metal complex decreases glycogen synthase kinase 3 (GSK3) activity in the subject. In another preferred embodiment the metal complex increases JNK activity in the subject. In another embodiment of the invention the metal complex leads to activation of one or more anti-oxidant enzymes. In one embodiment the anti-oxidant enzyme is superoxide dismutase (SOD).



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Metal delivery agents and therapeutic uses of the same patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Metal delivery agents and therapeutic uses of the same or other areas of interest.
###


Previous Patent Application:
Novel compositions and therapeutic methods using same
Next Patent Application:
Use of ferroquine in the treatment or prevention of malaria
Industry Class:
Drug, bio-affecting and body treating compositions
Thank you for viewing the Metal delivery agents and therapeutic uses of the same patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.90345 seconds


Other interesting Freshpatents.com categories:
Amazon , Microsoft , IBM , Boeing Facebook

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2171
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120270850 A1
Publish Date
10/25/2012
Document #
12515473
File Date
11/20/2007
USPTO Class
514184
Other USPTO Classes
435375, 514494, 514499
International Class
/
Drawings
15



Follow us on Twitter
twitter icon@FreshPatents