newTOP 200 Companies
filing patents this week

    Free Services  

  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • Save & organize patents so you can view them later.

  • View the last few months of your Keyword emails.

  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next →
← Previous

Human transmembrane proteins

Title: Human transmembrane proteins.
Abstract: The invention provides human transmembrane proteins (HTMPN) and polynucleotides which identify and encode HTMPN. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of HTMPN. ... Browse recent Incyte Corporation patents
USPTO Applicaton #: #20120270809
Inventors: Y. Tom Tang, Preeti Lal, Jennifer L. Hillman, Henry Yue, Karl J. Guegler, Neil C. Corley, Olga Bandman, Chandra Patterson, Gina A. Gorgone, Matthew R. Kaser, Mariah R. Baughn, Janice Au-young

The Patent Description & Claims data below is from USPTO Patent Application 20120270809, Human transmembrane proteins.


- Top of Page

This invention relates to nucleic acid and amino acid sequences of human transmembrane proteins and to the use of these sequences in the diagnosis, treatment, and prevention of immune, reproductive, smooth muscle, neurological, gastrointestinal, developmental, and cell proliferative disorders.


- Top of Page

Eukaryotic organisms are distinct from prokaryotes in possessing many intracellular organelle and vesicle structures. Many of the metabolic reactions which distinguish eukaryotic biochemistry from prokaryotic biochemistry take place within these structures. In particular, many cellular functions require very stringent reaction conditions, and the organelles and vesicles enable compartmentalization and isolation of reactions which might otherwise disrupt cytosolic metabolic processes. The organelles include mitochondria, smooth and rough endoplasmic reticula, sarcoplasmic reticulum, and the Golgi body. The vesicles include phagosomes, lysosomes, endosomes, peroxisomes, and secretory vesicles. Organelles and vesicles are bounded by single or double membranes.

Biological membranes are highly selective permeable barriers made up of lipid bilayer sheets composed of phosphoglycerides, fatty acids, cholesterol, phospholipids, glycolipids, proteoglycans, and proteins. Membranes contain ion pumps, ion channels, and specific receptors for external stimuli which transmit biochemical signals across the membranes. These membranes also contain second messenger proteins which interact with these pumps, channels, and receptors to amplify and regulate transmission of these signals.

Plasma Membrane Proteins

Plasma membrane proteins (MPs) are divided into two groups based upon methods of protein extraction from the membrane. Extrinsic or peripheral membrane proteins can be released using extremes of ionic strength or pH, urea, or other disruptors of protein interactions. Intrinsic or integral membrane proteins are released only when the lipid bilayer of the membrane is dissolved by detergent.

Transmembrane proteins (TM) are characterized by an extracellular, a transmembrane, and an intracellular domain. TM domains are typically comprised of 15 to 25 hydrophobic amino acids which are predicted to adopt an α-helical conformation. TM proteins are classified as bitopic (Types I and II) proteins, which span the membrane once, and polytopic (Types III and IV) (Singer, S. J. (1990) Annu. Rev. Cell Biol. 6:247-96) proteins which contain multiple membrane-spanning segments. TM proteins that act as cell-surface receptor proteins involved in signal transduction include growth and differentiation factor receptors, and receptor-interacting proteins such as Drosophila pecanex and frizzled proteins, LIV-1 protein, NF2 protein, and GNS1/SUR4 eukaryotic integral membrane proteins. TM proteins also act as transporters of ions or metabolites, such as gap junction channels (connexins), and ion channels, and as cell anchoring proteins, such as lectins, integrins, and fibronectins. TM proteins are found in vesicle organelle-forming molecules, such as calveolins; or cell recognition molecules, such as cluster of differentiation (CD) antigens, glycoproteins, and mucins.

Many membrane proteins (MPs) contain amino acid sequence motifs that serve to localize proteins to specific subcellular sites. Examples of these motifs include PDZ domains, KDEL, RGD, NGR, and GSL sequence motifs, von Willebrand factor A (vWFA) domains, and EGF-like domains. RGD, NGR, and GSL motif-containing peptides have been used as drug delivery agents in targeted cancer treatment of tumor vasculature (Arap, W. et al. (1998) Science, 279:377-380). Membrane proteins may also contain amino acid sequence motifs that serve to interact with extracellular or intracellular molecules, such as carbohydrate recognition domains.

Chemical modification of amino acid residue side chains alters the manner in which MPs interact with other molecules, for example, phospholipid membranes. Examples of such chemical modifications to amino acid residue side chains are covalent bond formation with glycosaminoglycans, oligosaccharides, phospholipids, acetyl and palmitoyl moieties, ADP-ribose, phosphate, and sulphate groups.

RNA-encoding membrane proteins may have alternative splice sites which give rise to proteins encoded by the same gene but with different messenger RNA and amino acid sequences. Splice variant membrane proteins may interact with other ligand and protein isoforms.

G-Protein Coupled Receptors

G-protein coupled receptors (GPCR) are a superfamily of integral membrane proteins which transduce extracellular signals. GPCRs include receptors for biogenic amines, lipid mediators of inflammation, peptide hormones, and sensory signal mediators.

The structure of these highly-conserved receptors consists of seven hydrophobic transmembrane (serpentine) regions, cysteine disulfide bridges between the second and third extracellular loops, an extracellular N-terminus, and a cytoplasmic C-terminus. Three extracellular loops alternate with three intracellular loops to link the seven transmembrane regions. The most conserved parts of these proteins are the transmembrane regions and the first two cytoplasmic loops. A conserved, acidic-Arg-aromatic residue triplet present in the second cytoplasmic loop may interact with G proteins. A GPCR consensus pattern is characteristic of most proteins belonging to this superfamily (ExPASy PROSITE document PS00237; and Watson, S, and S. Arkinstall (1994) The G-protein Linked Receptor Facts Book, Academic Press, San Diego, Calif., pp 2-6). Mutations and changes in transcriptional activation of GPCR-encoding genes have been associated with neurological disorders such as schizophrenia, Parkinson's disease, Alzheimer's disease, drug addiction, and feeding disorders.

Scavenger Receptors

Macrophage scavenger receptors with broad ligand specificity may participate in the binding of low density lipoproteins (LDL) and foreign antigens. Scavenger receptors types I and II are trimeric membrane proteins with each subunit containing a small N-terminal intracellular domain, a transmembrane domain, a large extracellular domain, and a C-terminal cysteine-rich domain. The extracellular domain contains a short spacer domain, an α-helical coiled-coil domain, and a triple helical collagenous domain. These receptors have been shown to bind a spectrum of ligands, including chemically modified lipoproteins and albumin, polyribonucleotides, polysaccharides, phospholipids, and asbestos (Matsumoto, A. et al. (1990) Proc. Natl. Acad. Sci. 87:9133-9137; and Elomaa, O. et al. (1995) Cell 80:603-609). The scavenger receptors are thought to play a key role in atherogenesis by mediating uptake of modified LDL in arterial walls, and in host defense by binding bacterial endotoxins, bacteria, and protozoa.

Tetraspan Family Proteins

The transmembrane 4 superfamily (TM4SF) or tetraspan family is a multigene family encoding type III integral membrane proteins (Wright, M. D. and Tomlinson, M. G. (1994) Immunol. Today 15:588). TM4SF is comprised of membrane proteins which traverse the cell membrane four times. Members of the TM4SF include platelet and endothelial cell membrane proteins, melanoma-associated antigens, leukocyte surface glycoproteins, colonal carcinoma antigens, tumor-associated antigens, and surface proteins of the schistosome parasites (Jankowski, S. A. (1994) Oncogene 9:1205-1211). Members of the TM4SF share about 25-30% amino acid sequence identity with one another.

A number of TM4SF members have been implicated in signal transduction, control of cell adhesion, regulation of cell growth and proliferation, including development and oncogenesis, and cell motility, including tumor cell metastasis. Expression of TM4SF proteins is associated with a variety of tumors and the level of expression may be altered when cells are growing or activated.

Tumor Antigens

Tumor antigens are surface molecules that are differentially expressed in tumor cells relative to normal cells. Tumor antigens distinguish tumor cells immunologically from normal cells and provide diagnostic and therapeutic targets for human cancers (Takagi, S. et al. (1995) Int. J. Cancer 61: 706-715; Liu, E. et al. (1992) Oncogene 7: 1027-1032).

Ion Channels

Ion channels are found in the plasma membranes of virtually every cell in the body. For example, chloride channels mediate a variety of cellular functions including regulation of membrane potentials and absorption and secretion of ions across epithelial membranes. When present in intracellular membranes of the Golgi apparatus and endocytic vesicles, chloride channels also regulate organelle pH (see, e.g., Greger, R. (1988) Arum. Rev. Physiol. 50:111-122). Electrophysiological and pharmacological properties of chloride channels, including ion conductance, current-voltage relationships, and sensitivity to modulators, suggest that different chloride channels exist in muscles, neurons, fibroblasts, epithelial cells, and lymphocytes.

Many channels have sites for phosphorylation by one or more protein kinases including protein kinase A, protein kinase C, tyrosine kinase, and casein kinase II, all of which regulate ion channel activity in cells. Inappropriate phosphorylation of proteins in cells has been linked to changes in cell cycle progression and cell differentiation. Changes in the cell cycle have been linked to induction of apoptosis or cancer. Changes in cell differentiation have been linked to diseases and disorders of the reproductive system, immune system, and skeletal muscle.

Proton Pumps

Proton ATPases are a large class of membrane proteins that use the energy of ATP hydrolysis to generate an electrochemical proton gradient across a membrane. The resultant gradient may be used to transport other ions across the membrane (Na+, K+, or Cl−) or to maintain organelle pH. Proton ATPases are further subdivided into the mitochondrial F-ATPases, the plasma membrane ATPases, and the vacuolar ATPases. The vacuolar ATPases establish and maintain an acidic pH within various vesicles involved in the processes of endocytosis and exocytosis (Mellman, I. et al. (1986) Ann. Rev. Biochem. 55:663-700).

Proton-coupled, 12 membrane-spanning domain transporters such as PEPT 1 and PEPT 2 are responsible for gastrointestinal absorption and for renal reabsorbtion of peptides using an electrochemical H± gradient as the driving force. Another type of peptide transporter, the TAP transporter, is a heterodimer consisting of TAP 1 and TAP 2 and is associated with antigen processing. Peptide antigens are transported across the membrane of the endoplasmic reticulum by TAP so they can be expressed on the cell surface in association with MHC molecules. Each TAP protein consists of multiple hydrophobic membrane spanning segments and a highly conserved ATP-binding cassette (Boll, M. et al. (1996) Proc. Natl. Acad. Sci. 93:284-289). Pathogenic microorganisms, such as herpes simplex virus, may encode inhibitors of TAP-mediated peptide transport in order to evade immune surveillance (Marusina, K. and Manaco, J. J. (1996) Curr. Opin. Hematol. 3:19-26).

ABC Transporters

The ATP-binding cassette (ABC) transporters, also called the “traffic ATPases”, comprise a superfamily of membrane proteins that mediate transport and channel functions in prokaryotes and eukaryotes (Higgins, C. F. (1992) Annu. Rev. Cell Biol. 8:67-113). ABC proteins share a similar overall structure and significant sequence homology. All ABC proteins contain a conserved domain of approximately two hundred amino acid residues which includes one or more nucleotide binding domains. Mutations in ABC transporter genes are associated with various disorders, such as hyperbilirubinemia II/Dubin-Johnson syndrome, recessive Stargardt's disease, X-linked adrenoluekodystrophy, multidrug resistance, celiac disease, and cystic fibrosis.

Membrane Proteins Associated with Intercellular Communication

Intercellular communication is essential for the development and survival of multicellular organisms. Cells communicate with one another through the secretion and uptake of protein signaling molecules. The uptake of proteins into the cell is achieved by endocytosis, in which the interaction of signaling molecules with the plasma membrane surface, often via binding to specific receptors, results in the formation of plasma membrane-derived vesicles that enclose and transport the molecules into the cytosol. The to secretion of proteins from the cell is achieved by exocytosis, in which molecules inside of the cell are packaged into membrane-bound transport vesicles derived from the trans-Golgi network. These vesicles fuse with the plasma membrane and release their contents into the surrounding extracellular space. Endocytosis and exocytosis result in the removal and addition of plasma membrane components and the recycling of these components is essential to maintain the integrity, identity, and functionality of both the plasma membrane and internal membrane-bound compartments.

Lysosomes are the site of degradation of intracellular material during autophagy and of extracellular molecules following endocytosis. Lysosomal enzymes are packaged into vesicles which bud from the trans-Golgi network. These vesicles fuse with endosomes to form the mature lysosome in which hydrolytic digestion of endocytosed material occurs. Lysosomes can fuse with autophagosomes to form a unique compartment in which the degradation of organelles and other intracellular components occurs. Protein sorting by transport vesicles, such as the endosome, has important consequences for a variety of physiological processes including cell surface growth, the biogenesis of distinct intracellular organelles, endocytosis, and the controlled secretion of hormones and neurotransmitters (Rothman, J. E. and Wieland, F. T. (1996) Science 272:227-234). In particular, neurodegenerative disorders and other neuronal pathologies are associated with biochemical flaws during endosomal protein sorting or endosomal biogenesis (Mayer R. J. et al. (1996) Adv. Exp. Med. Biol. 389:261-269).

Peroxisomes are organelles independent from the secretory pathway. They are the site of many peroxide-generating oxidative reactions in the cell. Peroxisomes are unique among eukaryotic organelles in that their size, number, and enzyme content vary depending upon organism, cell type, and metabolic needs. The majority of peroxisome-associated proteins are membrane-bound or are found proximal to the cytosolic or the lumenal side of the peroxisome membrane (Waterham, H. R. and Cregg, J. M. (1997) BioEssays 19:57-66).

Genetic defects in peroxisome proteins which result in peroxisomal deficiencies have been linked to a number of human pathologies, including Zellweger syndrome, rhizomelic chonrodysplasia punctata, X-linked adrenoleukodystrophy, acyl-CoA oxidase deficiency, bifunctional enzyme deficiency, classical Refsum's disease, DHAP alkyl transferase deficiency, and acatalasemia (Moser, H. W. and Moser, A. B. (1996) Ann. NY Acad. Sci. 804:427-441). In addition, Gartner, J. et al. (1991; Pediatr. Res. 29:141-146) found a 22 kDa integral membrane protein associated with lower density peroxisome-like subcellular fractions in patients with Zellweger syndrome.

Normal embryonic development and control of germ cell maturation is modulated by a number of secretory proteins which interact with their respective membrane-bound receptors. Cell fate during embryonic development is determined by members of the activin/TGF-β superfamily, cadherins, IGF-2, and other morphogens. In addition, proliferation, maturation, and redifferentiation of germ cell and reproductive tissues are regulated, for example, by IGF-2, inhibins, activins, and follistatins (Petraglia, F. (1997) Placenta 18:3-8; Mather, J. P. et al. (1997) Proc. Soc. Exp. Biol. Med. 215:209-222).

Endoplasmic Reticulum Membrane Proteins

The normal functioning of the eukaryotic cell requires that all newly synthesized proteins be correctly folded, modified, and delivered to specific intra- and extracellular sites. Newly synthesized membrane and secretory proteins enter a cellular sorting and distribution network during or immediately after synthesis and are routed to specific locations inside and outside of the cell. The initial compartment in this process is the endoplasmic reticulum (ER) where proteins undergo modifications such as glycosylation, disulfide bond formation, and assembly into oligomers. The modified proteins are then transported through a series of membrane-bound compartments which include the various cisternae of the Golgi complex, where further carbohydrate modifications occur. Transport between compartments occurs by means of vesicles that bud and fuse in a manner specific to the type of protein being transported. Once within the secretory pathway, proteins do not have to cross a membrane to reach the cell surface.

Although the majority of proteins processed through the ER are transported out of the organelle, some are retained. The signal for retention in the ER in mammalian cells consists of the tetrapeptide sequence, KDEL, located at the carboxyl terminus of proteins (Munro, S. (1986) Cell 46:291-300). Proteins containing this sequence leave the ER but are quickly retrieved from the early Golgi cisternae and returned to the ER, while proteins lacking this signal continue through the secretory pathway.

Disruptions in the cellular secretory pathway have been implicated in several human diseases. In familial hypercholesterolemia the low density lipoprotein receptors remain in the ER, rather than moving to the cell surface (Pathak, R. K. (1988) J. Cell Biol. 106:1831-1841). Altered transport and processing of the β-amyloid precursor protein (PAPP) involves the putative vesicle transport protein presenilin, and may play a role in early-onset Alzheimer's disease (Levy-Lahad. E. et al. (1995) Science 269:973-977). Changes in ER-derived calcium homeostasis have been associated with diseases such as cardiomyopathy, cardiac hypertrophy, myotonic dystrophy, Brody disease, Smith-McCort dysplasia, and diabetes mellitus.

Mitochondrial Membrane Proteins

The mitochondrial electron transport (or respiratory) chain is a series of three enzyme complexes in the mitochondrial membrane that is responsible for the transport of electrons from NADH to oxygen and the coupling of this oxidation to the synthesis of ATP (oxidative phosphorylation). ATP then provides the primary source of energy for driving the many energy-requiring reactions of a cell.

Most of the protein components of the mitochondrial respiratory chain are the products of nuclear encoded genes that are imported into the mitochondria and the remainder are products of mitochondrial genes. Defects and altered expression of enzymes in the respiratory chain are associated with a variety of disease conditions in man, including, for example, neurodegenerative diseases, myopathies, and cancer.

Lymphocyte and Leukocyte Membrane Proteins

The B-cell response to antigens, which is modulated through receptors, is an essential component of the normal immune system. Mature B cells recognize foreign antigens through B cell receptors (BCR) which are membrane-bound, specific antibodies that bind foreign antigens. The antigen/receptor complex is internalized and the antigen is proteolytically processed. To generate an efficient response to complex antigens, the BCR, BCR-associated proteins, and T cell response are all required. Proteolytic fragments of the antigen are complexed with major histocompatability complex-II (MHCII) molecules on the surface of the B cells where the complex can be recognized by T cells. In contrast, macrophages and other lymphoid cells present antigens in association with MHCI molecules to T cells. T cells recognize and are activated by the MHCI-antigen complex through interactions with the T cell receptor/CD3 complex, a T cell-surface multimeric protein located in the plasma membrane. T cells activated by antigen presentation secrete a variety of lymphokines that induce B cell maturation and T cell proliferation and activate macrophages, which kill target cells.

Leukocytes have a fundamental role in the inflammatory and immune response and include monocytes/macrophages, mast cells, polymorphonucleoleukocytes, natural killer cells, neutrophils, eosinophils, basophils, and myeloid precursors. Leukocyte membrane proteins include members of the CD antigens, N-CAM, I-CAM, human leukocyte antigen (HLA) class I and HLA class II gene products, immunoglobulins, immunoglobulin receptors, complement, complement receptors, interferons, interferon receptors, interleukin receptors, and chemokine receptors.

Abnormal lymphocyte and leukocyte activity has been associated with acute disorders, such as AIDS, immune hypersensitivity, leukemias, leukopenia, systemic lupus, granulomatous disease, and eosinophilia.

Apoptosis-Associated Membrane Proteins

A variety of ligands, receptors, enzymes, tumor suppressors, viral gene products, pharmacological agents, and inorganic ions have important positive or negative roles in regulating and implementing the apoptotic destruction of a cell. Although some specific components of the apoptotic pathway have been identified and characterized, many interactions between the proteins involved are undefined, leaving major aspects of the pathway unknown.

A requirement for calcium in apoptosis was previously suggested by studies showing the involvement of calcium levels in DNA cleavage and Fas-mediated cell death (Hewish, D. R. and L. A. Burgoyne (1973) Biochem. Biophys. Res. Comm. 52:504-510; Vignaux, F. et al. (1995) J. Exp. Med. 181:781-786; Oshimi, Y. and S. Miyazaki (1995) J. Immunol. 154:599-609). Other studies show that intracellular calcium concentrations increase when apoptosis is triggered in thymocytes by either T cell receptor cross-linking or by glucocorticoids and cell death can be prevented by blocking this increase (McConkey, D. J. et al. (1989) J. Immunol. 143:1801-1806; McConkey, D. J. et al. (1989) Arch. Biochem. Biophys. 269:365-370). Therefore, membrane proteins such as calcium channels are important for the apopoptic response.


Tumorgenesis is associated with the activation of oncogenes which are derived from normal cellular genes. These oncogenes encode oncoproteins which are capable of converting normal cells into malignant cells. Some oncoproteins are mutant isoforms of the normal protein and other oncoproteins are abnormally expressed with respect to location or level of expression. The latter category of oncoprotein causes cancer by altering transcriptional control of cell proliferation. Five classes of oncoproteins are known to affect the cell cycle controls. These classes include growth factors, growth factor receptors, intracellular signal transducers, nuclear transcription factors, and cell-cycle control proteins. These proteins include those which are modified by glycosylation, phosphorylation, glycosaminoglycan attachment, sulphation, and lipidation.

Modulation of factors which act in the coordination of the human cell division cycle may provide an important means to reduce tumorgenesis. An example of the metastasis-associated proteins is the lysosomal membrane glycoprotein P2B/LAMP-1 which is also expressed in normal tissues. (Heffernan, M. et al. (1989) Cancer Res. 49:6077-6084.) In addition, mammalian proteins homologous to the plant pathogenesis-related proteins have been identified in hyperplastic glioma. (Murphy, E. V. et al. (1995) Gene 159:131-135.)

The discovery of new human transmembrane proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of immune, reproductive, smooth muscle, neurological, gastrointestinal, developmental, and cell proliferative disorders.


- Top of Page


The invention features substantially purified polypeptides, human transmembrane proteins, referred to collectively as “HTMPN” and individually as “HTMPN-1”, “HTMPN-2”, “HTMPN-3”, “HTMPN-4”, “HTMPN-5”, “HTMPN-6”, “HTMPN-7”, “HTMPN-8”, “HTMPN-9”, “HTMPN-10”, “HTMPN-11”, “HTMPN-12”, “HTMPN-13”, “HTMPN-14”, “HTMPN-15”, “HTMPN-16”, “HTMPN-17”, “HTMPN-18”, “HTMPN-19”, “HTMPN-20”, “HTMPN-21”, “HTMPN-22”, “HTMPN-23”, “HTMPN-24”, “HTMPN-25”, “HTMPN-26”, “HTMPN-27”, “HTMPN-28”, “HTMPN-29”, “HTMPN-30”, “HTMPN-31”, “HTMPN-32”, “HTMPN-33”, “HTMPN-34”, “HTMPN-35”, “HTMPN-36”, “HTMPN-37”, “HTMPN-38”, “HTMPN-39”, “HTMPN-40”, “HTMPN-41”, “HTMPN-42”, “HTMPN-43”, “HTMPN-44”, “HTMPN-45”, “HTMPN-46”, “HTMPN-47”, “HTMPN-48”, “HTMPN-49”, “HTMPN-50”, “HTMPN-51”, “HTMPN-52”, “HTMPN-53”, “HTMPN-54”, “HTMPN-55”, “HTMPN-56”, “HTMPN-57”, “HTMPN-58”, “HTMPN-59”, “HTMPN-60”, “HTMPN-61”, “HTMPN-62”, “HTMPN-63”, “HTMPN-64”, “HTMPN-65”, “HTMPN-66”, “HTMPN-67”, “HTMPN-68”, “HTMPN-69”, “HTMPN-70”, “HTMPN-71”, “HTMPN-72”, “HTMPN-73”, “HTMPN-74”, “HTMPN-75”, “HTMPN-76”, “HTMPN-77”, “HTMPN-78”, and “HTMPN-79”. In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, and SEQ ID NO:79 (SEQ ID NO:1-79), and fragments thereof.

The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof.

Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof.

The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, and SEQ ID NO:158 (SEQ ID NO:80-158), and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:80-158, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:80-158, and fragments thereof.

The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. In another aspect, the expression vector is contained within a host cell.

The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.

The invention also provides a method for treating or preventing a disorder associated with decreased expression or activity of HTMPN, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention also provides a method for treating or preventing a disorder associated with increased expression or activity of HTMPN, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof.


Table 1 shows nucleotide and polypeptide sequence identification numbers (SEQ ID NOs), clone identification numbers (clone ID), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding HTMPN.

Table 2 shows features of each polypeptide sequence including predicted transmembrane sequences, potential motifs, homologous sequences, and methods and algorithms used for identification of HTMPN.

Table 3 shows the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis, diseases, disorders, or conditions associated with these tissues, and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which Incyte cDNA clones encoding HTMPN were isolated.

Table 5 shows the programs, their descriptions, references, and threshold parameters used to analyze HTMPN.


Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “a host cell” includes a plurality of such host cells, and a reference to “an antibody” is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.


“HTMPN” refers to the amino acid sequences of substantially purified HTMPN obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and preferably the human species, from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term “agonist” refers to a molecule which, when bound to HTMPN, increases or prolongs the duration of the effect of HTMPN. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of HTMPN.

An “allelic variant” is an alternative form of the gene encoding HTMPN. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

“Altered” nucleic acid sequences encoding HTMPN include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide the same as HTMPN or a polypeptide with at least one functional characteristic of HTMPN. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding HTMPN, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HTMPN. The encoded protein may also be “altered,” and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent HTMPN. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of HTMPN is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and phenylalanine and tyrosine.

The terms “amino acid” or “amino acid sequence” refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, “fragments,” “immunogenic fragments,” or “antigenic fragments” refer to fragments of HTMPN which are preferably at least 5 to about 15 amino acids in length, most preferably at least 14 amino acids, and which retain some biological activity or immunological activity of HTMPN. Where “amino acid sequence” is recited to refer to an amino acid sequence of a naturally occurring protein molecule, “amino acid sequence” and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

“Amplification” relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term “antagonist” refers to a molecule which, when bound to HTMPN, decreases the amount or the duration of the effect of the biological or immunological activity of HTMPN. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of HTMPN.

The term “antibody” refers to intact molecules as well as to fragments thereof, such as Fab, F(ab′)2, and Fv fragments, which are capable of binding the epitopic determinant. Antibodies that bind HTMPN polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term “antigenic determinant” refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term “antisense” refers to any composition containing a nucleic acid sequence which is complementary to the “sense” strand of a specific nucleic acid sequence. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and to block either transcription or translation. The designation “negative” can refer to the antisense strand, and the designation “positive” can refer to the sense strand.

The term “biologically active,” refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, “immunologically active” refers to the capability of the natural, recombinant, or synthetic HTMPN, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms “complementary” or “complementarity” refer to the natural binding of polynucleotides by base pairing. For example, the sequence “5′ A-G-T 3′” bonds to the complementary sequence “3′ T-C-A 5′.” Complementarity between two single-stranded molecules may be “partial,” such that only some of the nucleic acids bind, or it may be “complete,” such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands, and in the design and use of peptide nucleic acid (PNA) molecules.

A “composition comprising a given polynucleotide sequence” or a “composition comprising a given amino acid sequence” refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding HTMPN or fragments of HTMPN may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt\'s solution, dry milk, salmon sperm DNA, etc.).

“Consensus sequence” refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using XL-PCR kit (Perkin-Elmer, Norwalk Conn.) in the 5′ and/or the 3′ direction, and resequenced, or which has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly, such as the GELVIEW Fragment Assembly system (GCG, Madison Wis.). Some sequences have been both extended and assembled to produce the consensus sequence.

The term “correlates with expression of a polynucleotide” indicates that the detection of the presence of nucleic acids, the same or related to a nucleic acid sequence encoding HTMPN, by northern analysis is indicative of the presence of nucleic acids encoding HTMPN in a sample, and thereby correlates with expression of the transcript from the polynucleotide encoding HTMPN.

A “deletion” refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term “derivative” refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

The term “similarity” refers to a degree of complementarity. There may be partial similarity or complete similarity. The word “identity” may substitute for the word “similarity.” A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as “substantially similar.” The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

The phrases “percent identity” or “% identity” refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences. Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Madison Wis.) which creates alignments between two or more sequences according to methods selected by the user, e.g., the clustal method. (See, e.g., Higgins, D. G. and P. M. Sharp (1988) Gene 73:237-244.) The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) Methods Enzymol. 183:626-645.) Identity between sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions.

“Human artificial chromosomes” (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

← Previous       Next → Advertise on - Rates & Info

You can also Monitor Keywords and Search for tracking patents relating to this Human transmembrane proteins patent application.
monitor keywords

Browse recent Incyte Corporation patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Human transmembrane proteins or other areas of interest.

Previous Patent Application:
Compositions and methods related to synchronous selection of homing peptides for multiple tissues by in vivo phage display
Next Patent Application:
Modification of enzymatic crosslinkers for controlling properties of crosslinked matrices
Industry Class:
Drug, bio-affecting and body treating compositions
Thank you for viewing the Human transmembrane proteins patent info.
- - -

Results in 0.145 seconds

Other interesting categories:
Amazon , Microsoft , Boeing , IBM , Facebook


Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. Terms/Support
Next →
← Previous

stats Patent Info
Application #
US 20120270809 A1
Publish Date
Document #
File Date
Other USPTO Classes
International Class

Your Message Here(14K)

Follow us on Twitter
twitter icon@FreshPatents

Incyte Corporation

Browse recent Incyte Corporation patents

Browse patents:
Next →
← Previous