Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next
Prev

Dosing regimens for neural stem cell proliferating agents and differentiating agents for the treatment of neurological disorders




Title: Dosing regimens for neural stem cell proliferating agents and differentiating agents for the treatment of neurological disorders.
Abstract: Effective dosing regimens for neural stem cell proliferating and differentiating agents, kits comprising effective dosing regimens for neural stem cell proliferating and differentiating agents, and uses thereof are provided herein. Such kits and methods can be utilized acutely or chronically to treat a neurodegenerative disease or condition. Furthermore, the compositions and methods can be used continuously or intermittently in various dosing regimens. ...


Browse recent Stem Cell Therapeutics Corp. patents


USPTO Applicaton #: #20120270779
Inventors: Samuel Weiss, Christopher Gregg, Allen Davidoff, Joseph E. Tucker


The Patent Description & Claims data below is from USPTO Patent Application 20120270779, Dosing regimens for neural stem cell proliferating agents and differentiating agents for the treatment of neurological disorders.

CROSS-REFERENCE TO RELATED APPLICATIONS

- Top of Page


This application is a divisional of U.S. application Ser. No. 11/687,302, filed Mar. 16, 2007, which claims priority to and the benefit of U.S. Provisional Application Ser. No. 60/783,500, filed on Mar. 17, 2006; U.S. Provisional Application Ser. No. 60/789,132, filed on Apr. 5, 2006; and U.S. Provisional Application Ser. No. 60/862,669, filed on Oct. 24, 2006, which are incorporated herein by reference in their entireties.

BACKGROUND

- Top of Page


The development of techniques for the isolation and in vitro culture of multipotent neural stem cells (for example, see U.S. Pat. Nos. 5,750,376; 5,980,885; 5,851,832) significantly improved the outlook for the treatment of neurodegenerative diseases and conditions. It was discovered that fetal brains can be used to isolate and culture multipotent neural stem cells in vitro. Moreover, in contrast to the long held belief that adult brain cells are not capable of replicating or regenerating brain cells, it was found that neural stem cells may also be isolated from brains of adult mammals. These stem cells, either from fetal or adult brains, are capable of self-replicating. The progeny cells can proliferate or differentiate into any cell in the neural cell lineage, including neurons, astrocytes and oligodendrocytes. Therefore, these findings not only provide a source of neural cells which can be used in transplantations but also demonstrate the presence of multipotent neural stem cells in adult brain.

Certain agents, neural stem cell proliferating agents, have been found to increase the number of neural stem cells in vitro or in vivo. The mechanisms for such increase may include stimulating proliferation, inhibiting differentiation, and/or preventing death of the neural stem cells. Additional agents, stem cell differentiating agents, have been found to selectively enhance the production of neuronal precursor cells or glial precursor cells in vitro or in vivo. These proliferating and differentiating agents can thus be employed to increase and selectively enhance neurons and glial cells.

SUMMARY

- Top of Page


Provided herein are effective dosing regimens for neural stem cell proliferating agents and differentiating agents, kits, and uses thereof. Such compositions of matter and methods can be utilized acutely (e.g., within days after neural injury or onset of neurologic symptoms) or can be used chronically (e.g., for a persisting neural injury or ongoing neurologic symptoms). Furthermore, the compositions and methods can be used continuously or intermittently.

Accordingly, a method for treating or ameliorating a neurodegenerative disease or condition in a mammal is provided. The method comprises administering to the mammal an effective amount of hCG or LH and an effective amount of EPO, wherein the hCG or LH is administered systemically in at least three doses, optionally by use of a kit. The hCG, LH, and/or EPO can be administered either continuously or intermittently. Further, the hCG or LH can be administered in a first treatment period and EPO can be delivered in a second treatment period. For example, hCG or LH can be administered intermittently on days 1, 3, and 5 of a first treatment period, then EPO can be administered continuously on days 1, 2, and 3 of a second treatment period.

Also provided herein is a further method for treating or ameliorating a neurodegenerative disease or condition in a mammal. The method comprises administering to the mammal an effective amount of hCG or LH in a first treatment period followed by an effective amount of EPO in a second treatment period, optionally by use of a kit. The hCG or LH can be delivered intermittently during the first treatment period and the EPO can be delivered continuously during the second treatment period. For example, hCG or LH can be administered intermittently on days 1, 3, and 5 of a first treatment period, then EPO can be administered continuously on days 1, 2, and 3 of a second treatment period.

In the methods and kits, the treatment periods may be, for example, at least three days. The treating methods can be repeated several times or many times with second, third, forth, fifth, etc. treating periods. The treating methods, whether administered once, twice, several, or many times, can take the form of one or more kits.

The details of methods and kits are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the methods and kits will be apparent from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF FIGURES

FIG. 1 shows the effect on functional recovery of a rat subjected to a Middle Cerebral Artery occlusion (MCAo) stroke with increasing dosages of hCG with an intravenous (IV) administration of 1440 IU EPO per day following intramuscular (IM) administration of dosages of hCG.

FIG. 2 shows the differential effect on functional recovery of a rat subjected to a MCAo stroke, compared to untreated controls, of 440 IU of hCG with an IV administration of 1440 IU EPO per day, hCG alone, or EPO alone.

FIG. 3 is a graph indicating % tissue loss (compared to non-stroke hemisphere) in rats subjected to a MCAo stroke, compared to untreated controls, of 440 IU of hCG with an IV administration of 1440 IU EPO per day, hCG alone, or EPO alone.

FIG. 4 shows representative images of tissue loss in rats subjected to a MCAo stroke, compared to untreated controls, of 440 IU of hCG with an IV administration of 1440 IU EPO per day, hCG alone, or EPO alone.

FIG. 5 is a bar graph indicating serum hCG levels as measured after a third IM administration of hCG in Example 2.

FIG. 6 shows the result of six day subcutaneous prolactin infusions in male rats at 10, 15, and 20 times the concentrations used for intracerebroventricular infusions. The total number of bromodeoxyuridine positive (BrdU+) cells in the subventricular zone (SVZ) for 8 sections from each animal is presented. The greatest increase in SVZ proliferation levels was observed with the 15 times dose (170 μg/day for 6 days). (10 times=113 μg/day; 20 times=226 μg/day; Control=rat serum albumin only (RSA)). Significance relative to control: 10×=*p<0.05; 15×=**p<0.01; 20×=p<0.05; n=3 for all conditions; one way analysis of variance (ANOVA) with Tukey posthoc test.

FIG. 7 shows the results of prolactin dosing in male rats using single daily intraperitoneal injections. The total number of BrdU+ cells per section are presented for each dosing regime. (A) A small increase in SVZ proliferation was observed with high 3 day doses. (B) The most robust dosing condition for increasing SVZ proliferation levels used a low, 170 μg/day dose each day over 6 days. Significance is relative to RSA control. n=3; *p<0.05; **p<0.01; one-way ANOVA followed by a Tukey posthoc test.

FIG. 8 shows that single intramuscular injections of hCG on days 1, 3, and 5 post-stroke (stroke=day 0) trigger significantly increased proliferation in the forebrain SVZ. Significant increases in the number of Phospho-Histone H3 positive (pHH3+) cells per ventricle were observed in the 1000 μg dose condition (n=3; *p<0.05; one way ANOVA with Tukey posthoc). Images show the nuclear label Hoechst and pHH3 expression in the dorsolateral corner of the lateral ventricles in RSA pial strip control rats versus 1000 μg hCG dosed animals, note the increase in total cell number and pHH3 expression in SVZ of 1000 μg dosed animals.

FIG. 9 shows that single intramuscular injections of 1000 μg per day of hCG on days 1, 3, and 5 post-stroke (stroke=day 0) trigger increased neurogenesis in the forebrain SVZ. The number of doublecortin+neurons was quantified in the dosed animals and was doubled in the 1000 μg dose animals. (n=3; **p<0.01).

FIG. 10 shows the results of single intramuscular injections of hCG given daily for 7 days starting 24 hrs post-stroke (stroke=day 0). (A) The daily 330 μg/injection dosing regime significantly increased the number of proliferating (pHH3+ cells) in the SVZ relative to all other dosing conditions and controls (n=3; *p<0.01; one way ANOVA with Tukey posthoc). (B) Observation of the ischemic lesions in the motor cortex of dosed rats revealed that animals receiving the 330 μg/injection daily dosing regime demonstrated new tissue growth and filling in of the lesion site with a tissue plug.

FIG. 11 shows increased proliferation in the SVZ of 330 μg/injection daily hCG dosed animals as confirmed by counts of BrdU+ cells. The number of BrdU+ cells per ventricle was significantly increased in the 330 μg/injection condition relative to control and 100 μg/injection (p<0.01; n=3; one way ANOVA with Tukey posthoc analysis). These results further confirmed the increase in proliferation observed with pHH3 staining

Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

- Top of Page


Currently there are no neural stem cell proliferating and differentiating agents that have been clinically approved for use in treatment of neurological diseases or conditions. These agents are useful in treating neurological diseases and conditions, thus there is a need for effective dosing regimens using these agents. Effective dosing regimens for neural stem cell proliferating and differentiating agents, kits comprising effective dosing regimens for neural stem cell proliferating agents, and uses thereof are provided herein. Such kits and methods can be utilized acutely (e.g., within days after injury or onset of a neurodegenerative disease or condition) or can be used chronically (e.g., for a chronic neurodegenerative disease or condition). Furthermore, the compositions and methods can be used continuously or intermittently as further described below.

The methods described herein use neural stem cell proliferating agents for treating or ameliorating a neurodegenerative disease or condition. In these methods, a neural stem cell proliferating agent is administered over the course of a first treatment period. The neural stem cell proliferating agent can be administered continuously or intermittently during the first treatment period. A neural stem cell differentiating agent can further be added during the first treatment period. The examples and description include the use of neural stem cell proliferating agents (e.g., prolactin, hCG, LH, CSF, G-CSF, GM-CSF, VEGF) and differentiating agents (e.g., EPO, BDNF, BMP, PACAP); however, analogs, fragments, or variants of such agents can similarly be used in any of the methods, devices, or kits taught herein. As a specific example, a method is disclosed in which an effective amount of hCG or LH and an effective amount of EPO are administered to a mammal, wherein the hCG or LH is administered systemically in at least three doses.

These methods for using neural stem cell proliferating agents for treating or ameliorating a neurodegenerative disease or condition can further include administering a neural cell differentiating agent in a second treatment period that starts after the end of the first treatment period. The second treatment period can be at least three days. The neural stem cell differentiating agent can be administered continuously or intermittently during the second treatment period. The second treatment period can begin at least one day after the end of the second treatment period. As a specific example, a method is disclosed in which a neural stem cell proliferating agent is administered continuously at least three times systemically over a first treatment period and a neural stem cell differentiating agent is administered over a second treatment period. As a further example, a method is disclosed in which the first treatment period is five days, the neural stem cell proliferating agent is administered intermittently, a second treatment period starts one day after the end of the first treatment period, and the neural stem cell differentiating agent is administered continuously for at least three days. As an additional example, an effective amount of hCG or LH can be administered in a first treatment period followed by an effective amount of EPO in a second treatment period.

As used herein, to deliver or administer a substance continuously to a subject means to deliver or administer the substance at least once per day for a period of consecutive days. For example, the substance may be administered systemically by injection (e.g., IM or subcutaneously) or taken orally daily at least once per day, or administered by infusion in a manner that results in the daily delivery into the tissue or blood stream of the subject. Optionally, the substance is delivered by infusion or a means other than infusion. As used herein the term systemically does not include intracerebral ventricular infusion. The duration, or treatment period, during which the substance is continuously delivered or administered can last from three days to several years, even for the rest of a subject\'s life. For example, the duration may be 3-6 days, 3-14 days, 3-21 days, 3-28 days, 1-4 months, 1-6 months, 1-9 months, 1-12 months, 1-2 years, 1-3 years, 1-5 years, 1-10 years, and the like. For further example the treatment period for continuous delivery can be at least three days, at least four days, at least five days, at least six days, at least seven days, or at least fourteen days. Further, the substance can be delivered consecutively on days 1, 2, and 3 of the administration period.

As used herein, to deliver or administer a substance intermittently to a subject means to deliver or administer the substance less than daily, including, for example, once every 2, 3, 4, 5, or 7 days for a period of time. For example, the substance may be delivered or administered every other day of a treatment period, e.g., on days 1, 3, and 5 of a treatment period. The duration, or treatment period, during which the substance is intermittently delivered or administered can last from three days to several years, even for the rest of a subject\'s life. For example, the duration may be 3-6 days, 3-14 days, 3-21 days, 3-28 days, 1-4 months, 1-6 months, 1-9 months, 1-12 months, 1-2 years, 1-3 years, 1-5 years, 1-10 years, and the like. For further example the treatment period for intermittent delivery can be at least three days, at least four days, at least five days, at least six days, at least seven days, or at least fourteen days.




← Previous       Next → Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Dosing regimens for neural stem cell proliferating agents and differentiating agents for the treatment of neurological disorders patent application.

###


Browse recent Stem Cell Therapeutics Corp. patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Dosing regimens for neural stem cell proliferating agents and differentiating agents for the treatment of neurological disorders or other areas of interest.
###


Previous Patent Application:
Compositions and methods for non-invasive treatment of chronic complications of diabetes
Next Patent Application:
Method and composition for modulating erythropoiesis
Industry Class:
Drug, bio-affecting and body treating compositions
Thank you for viewing the Dosing regimens for neural stem cell proliferating agents and differentiating agents for the treatment of neurological disorders patent info.
- - -

Results in 0.16321 seconds


Other interesting Freshpatents.com categories:
Amazon , Microsoft , Boeing , IBM , Facebook

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2019

66.232.115.224
Browse patents:
Next
Prev

stats Patent Info
Application #
US 20120270779 A1
Publish Date
10/25/2012
Document #
File Date
12/31/1969
USPTO Class
Other USPTO Classes
International Class
/
Drawings
0


Neurodegenerative Disease

Follow us on Twitter
twitter icon@FreshPatents

Stem Cell Therapeutics Corp.


Browse recent Stem Cell Therapeutics Corp. patents





Browse patents:
Next →
← Previous
20121025|20120270779|dosing regimens for neural stem cell proliferating agents and differentiating agents for the treatment of neurological disorders|Effective dosing regimens for neural stem cell proliferating and differentiating agents, kits comprising effective dosing regimens for neural stem cell proliferating and differentiating agents, and uses thereof are provided herein. Such kits and methods can be utilized acutely or chronically to treat a neurodegenerative disease or condition. Furthermore, the compositions |Stem-Cell-Therapeutics-Corp