newTOP 200 Companies
filing patents this week

    Free Services  

  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • Save & organize patents so you can view them later.

  • View the last few months of your Keyword emails.

  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next →
← Previous

Method and system for robotic algae harvest

Title: Method and system for robotic algae harvest.
Abstract: A Robotic Algae Harvester (RAH) of the present invention works by providing a CO2 collection mechanism that is installed in power plants or vehicles. These systems are available using current technology and have been proven to be scalable. CO2 is then transported to RAH using ships. The RAH will feed and re-circulate algae broth through the photobioreactors (PBRs). The PBRs float in the ocean while the algae through photosynthesis will transform the CO2 into biomass in a continuous process. The extracted algae will processed into a stable mix of oil and bi-product and transferred to the ship that brought the CO2. The algae is then processed onshore in some of the following manners: converted to biodiesel via transesterification; converted to bio-ethanol via fermentation; burned for electricity generation; and/or used as protein for animal feed or food products. ...
USPTO Applicaton #: #20120270284
Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy

The Patent Description & Claims data below is from USPTO Patent Application 20120270284, Method and system for robotic algae harvest.


Not Applicable


Not Applicable


Not Applicable

This application claims priority from and is a Continuation of U.S. patent application Ser. No. 12/341,990, entitled “Method and system for robotic algae harvest”, filed on Dec. 22, 2008, which is incorporated by reference in its entirety for all purposes as if fully set forth herein.



- Top of Page

The present invention relates generally to a method and system for growing and harvesting algae for use in bio-fuels. More specifically, the present invention relates to a method and system for robotic algae harvest for use in bio-fuels and other applications.


- Top of Page

There are two challenges facing our society that could menace our standards of living and way of life. The first is carbon emissions from our cars and power plants are contributing to global warming and could in the long term threaten landmasses by raising water levels. The second is fuel prices are forcing many industries out of business, as well as putting pressure on the average citizens on their daily work. Current fuel prices produce a drag on the U.S. economy and create large cash surpluses in sometimes questionable oil rich countries.

In 2007, the International Monetary Fund (IMF), warned that higher biofuel demand in the United States and the European Union (EU) has not only led to higher corn and soybean prices, it has also resulted in price increases on substitution crops and increased the cost of livestock feed by providing incentives to switch away from other crops. Researches have found that converting rainforests, peatlands, savannas, or grasslands to produce food-based biofuels in Brazil, Southeast Asia, and the United States creates a ‘biofuel carbon debt’ by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions these biofuels provide by displacing fossil fuels. Other researches have found that corn-based ethanol increased emissions by 100% and biofuels from switchgrass, if grown on U.S. corn lands, increase emissions by 50%.

Many alternative energy solutions attack one problem, at the danger of worsening the other. For example, the there has been much effort in processing fuels from oil-rich sands. Even though this approach has the potential of reducing the price of fuel, in turn, it could increase the fuel consumption and increase carbon emissions. Other technologies such as windmills, or hybrid vehicles could increase water pollution by increasing the usage of batteries with heavy metals. Other approaches would cause huge infrastructure investments that even if the U.S. and other developed countries would be willing to undertake, other large polluters like China and India would be less inclined to invest.

Many attempts have been made at growing algae for bio-fuels; most of them on land. One of the most notorious has been GreenFuel Technologies. The main reason that some of those systems failed to this day to be profitable is that they assumed algae growth that although possible under laboratory conditions, it cannot be sustained outdoors. The foundations for these systems were all derived from these algae growth rates, then propagated through their cost estimates and engineering designs. The GreenFuel claims cannot be substantiated following simple conservation of energy equations given the amount of energy received from the sun.


- Top of Page


The present invention teaches a novel robotic Algae harvester for the production of bio-fuels from algae that overcomes the shortcomings of prior art solutions.

The major hurdles with microalgae harvesting include: Algae varieties rich in oils do not survive well in open ponds because the have a hard time competing with naturally occurring algae; Optimal algae grows is dependent on the temperature of the water; Algae cultures require large amounts of water; and Dissolving sufficient amounts of CO2 from the air require large air-water surfaces.

The present invention teaches a sustainable process for growing algae for the production of biofuels. The recent interest in the use of agriculture products as replacements for petrochemical products (biodegradable plastics, ethanol for transportation, etc) has had unintended consequences (rise in food prices) and unseen environmental impact (carbon emissions). The proposed project may enable a bio-fuel that does not impact critical food prices while having a more environmentally friendly carbon implant. In fact, this project is expected to make use of sequestered carbon in the growth of the algae.

World demand for biofuels will expand at a nearly 20 percent annual pace to 92 million metric tons in 2011, despite recent concerns about the impact of biofuels on the environment and food supplies. Market expansion will come from a more than doubling of the world market for bioethanol, and even faster increases in global biodiesel demand. Despite the growing size of the world's largest producers, the proliferation of new companies and rapid expansion of the biofuel industry overall combined to limit the top nine producers to just a 30 percent share of the market in 2006. This lack of dominant companies will enable Robotic research to compete in this rabidly growing market.

The proposed system referred to herein as the Robotic Algae Harvester (also referred to as “RAH”) is composed of an ocean floating robotic system that provides a set of enclosed volume photobioreactions (PBR) for algae growth. Some of the advantages of the proposed system include: Absorption of CO2 with the production of biodiesel; the sea provides ample heat dissipation maintaining the water at optimal growth temperatures; an abundant water supply; enclosed growth environment that allows growth of oil rich algae varieties; enclosed growth environment that provides advantages for high rates of CO2 enrichment; no real estate costs as the robotic platform will be floating in the ocean; maximum photosynthetically active radiation (PAR) by strategically locating the systems in areas where the 400-700 nm part of the spectrum is the strongest and has the least to no environmental impact as RAH will be floating far away from coastal areas; and high endurance to storms as RAH will sink below surface to avoid rough weather.

The system and method taught by the present invention produces multiple products and generates multiple sources of income from: biodiesel; ethanol; carbon credits; tax subsidies; and dry algae briquettes. The present invention does not require significant changes to the current infrastructure, does not require large landmasses, and each individual technology is currently available.

It is therefore an objective of the present invention to teach an economically and environmentally sustainable system and method for the production of algae for bio-fuel use. The present invention is responsive to the USDA's call for economically and environmentally sustainable production of biomass material to be used as fuel, including but not limited to, ethanol.

It is also therefore an objective of the present invention to teach the use of algae that will not have adverse effects on food prices, nor result in a ‘bio-fuel carbon debt’ unlike bio-fuels products based on food products.


- Top of Page

The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention.

FIG. 1 illustrates the method of the Robotic Algae Harvester (RAH);

FIG. 2 is a list of microalgae being considered for biofuels and their typical percentage of dry weight oil;

FIG. 3 illustrates the results achieved on land utilizing open raceway ponds and land based PBRs;

FIG. 4 illustrates a simple functional schematic of the Robotic Algae Harvester (RAH) of the present invention;

FIG. 5 illustrates the basic PBR design of the present invention;

FIGS. 6 and 7 illustrate visual simulation results of RAHs stability using seastates; and

FIG. 8 illustrates a preliminary model of several hexagons subjected to a seastate level 5.


- Top of Page


In the following detailed description of the invention of exemplary embodiments of the invention, reference is made to the accompanying drawings (where like numbers represent like elements), which form a part hereof, and in which is shown by way of illustration specific exemplary embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, but other embodiments may be utilized and logical, mechanical, electrical, and other changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.

In the following description, numerous specific details are set forth to provide a thorough understanding of the invention. However, it is understood that the invention may be practiced without these specific details. In other instances, well-known structures and techniques known to one of ordinary skill in the art have not been shown in detail in order not to obscure the invention.

Referring to the Figures, it is possible to see the various major elements constituting the apparatus of the present invention. The present invention is a method for generating, producing, and distributing advertising materials. The present invention is a method and system for robotic algae harvest.

Now referring to FIG. 1, the method of the Robotic Algae Harvester (RAH) is illustrated. The Robotic Algae Harvester (RAH) 100 of the present invention works by providing a CO2 collection mechanisms 101 that is installed in power plants 102 and vehicles 103. These systems are available using current technology and have been proven to be scalable. CO2 111 is then transported to the RAH 100 using ships 104. The RAH 100 will continuously feed and re-circulate the algae broth 105 through the photobioreactors (PBRs) 106. The PBRs 106 float in the ocean 107 while the algae 108, through photosynthesis, transforms the CO2 into biomass in a continuous process. The extracted algae 109 will be transferred and preprocessed into a stable mix of oil and bi-product 110 to the ship 104 that brought the CO2 111. The extracted algae 109 is then processed onshore 112 in some of the following manners: converted to biodiesel via transesterification 113; converted to bio-ethanol via fermentation 114; burned for electricity generation 115; and/or used as protein for animal feed 116.

The method of the present invention will be an around the year continuous process. RAH will autonomously control the location of the platform slowly shifting it to zones with high PAR. RAH will also submerge the PBRs in cases where the weather could damage the system (i.e. hurricanes).

Photosynthesis transforms CO2 into carbohydrates (CH2O)n. it can be represented as:


These carbohydrates have a heating value of 468 kJ per mole, and a mole of PAR photons is 217.4 kJ. Therefore the eight protons that photosynthesis needs to capture one molecule of CO2 will yield a maximum conversion efficiency of:

Q photo = 477   kJ 8 × 208   kl = 28.7  %

This could only be achieved if the organism did nothing except transforming CO2 into (CH2O)n. However, algae perform other bodily functions not directly related to the conversion, and due to the pathway taken by the sun to arrive to the cell as well as the processing of the final product. Therefore, the actual conversion numbers are lower than the above 28.7%. Now referring to these other parameters that affect the efficiency of the cell as Qs. These include: Ql is the efficiency loss due to other algal function not directly related with oil generation

← Previous       Next → Advertise on - Rates & Info

You can also Monitor Keywords and Search for tracking patents relating to this Method and system for robotic algae harvest patent application.
monitor keywords

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Method and system for robotic algae harvest or other areas of interest.

Previous Patent Application:
Enzyme interesterification process
Next Patent Application:
Stereospecific carbonyl reductases
Industry Class:
Chemistry: molecular biology and microbiology
Thank you for viewing the Method and system for robotic algae harvest patent info.
- - -

Results in 0.09267 seconds

Other interesting categories:
Amazon , Microsoft , Boeing , IBM , Facebook


Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. Terms/Support
Next →
← Previous

stats Patent Info
Application #
US 20120270284 A1
Publish Date
Document #
File Date
Other USPTO Classes
International Class

Your Message Here(14K)

Follow us on Twitter
twitter icon@FreshPatents

Chemistry: Molecular Biology And Microbiology   Micro-organism, Tissue Cell Culture Or Enzyme Using Process To Synthesize A Desired Chemical Compound Or Composition   Preparing Oxygen-containing Organic Compound   Fat; Fatty Oil; Ester-type Wax; Higher Fatty Acid (i.e., Having At Least Seven Carbon Atoms In An Unbroken Chain Bound To A Carboxyl Group); Oxidized Oil Or Fat  

Browse patents:
Next →
← Previous