FreshPatents.com Logo
stats FreshPatents Stats
8 views for this patent on FreshPatents.com
2014: 1 views
2013: 4 views
2012: 3 views
Updated: October 13 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Methods and kits for detecting hemoglobin in test samples

last patentdownload pdfdownload imgimage previewnext patent


20120270258 patent thumbnailZoom

Methods and kits for detecting hemoglobin in test samples


The present invention relates to methods of detecting hemoglobin in a test sample. These methods can be used to diagnose a subject suffering from a genetic disorder relating to hemoglobin metabolism, to determine the eligibility of a subject to be a blood donor, to determine the age of a stored blood sample or to identify a hemolyzed plasma sample. The present invention also relates to kits for use in the above described methods.
Related Terms: Genetic Disorder

Browse recent Abbott Laboratories patents - Abbott Park, IL, US
Inventors: Maciej Adamczyk, Roy J. Brashear, Phillip G. Mattingly
USPTO Applicaton #: #20120270258 - Class: 435 29 (USPTO) - 10/25/12 - Class 435 
Chemistry: Molecular Biology And Microbiology > Measuring Or Testing Process Involving Enzymes Or Micro-organisms; Composition Or Test Strip Therefore; Processes Of Forming Such Composition Or Test Strip >Involving Viable Micro-organism

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120270258, Methods and kits for detecting hemoglobin in test samples.

last patentpdficondownload pdfimage previewnext patent

RELATED APPLICATION INFORMATION

The present application is a divisional of and claims priority to allowed U.S. application Ser. No. 12/362,331, filed on Jan. 29, 2009, hereby incorporated in its entirety by reference.

TECHNICAL FIELD

The present invention relates to methods of detecting and/or quantifying the amount of hemoglobin in a test sample. The methods of the present invention can be used to diagnose a subject suffering from a genetic disorder relating to hemoglobin metabolism, to determine the eligibility of a subject to be a blood donor, to determine the age of a stored blood sample and to identify a hemolyzed plasma sample. The present invention further relates to kits for use in the above described methods.

BACKGROUND

Adult hemoglobin A (HbA) is a tetrameric protein of molecular weight 64.5 kD, composed of 2 α-globins and 2 β-globins (α2β2). The alpha α-subunit is composed of 141 amino acids (See, SEQ ID NO:1). The β-subunit is composed of 146 amino acids (See, SEQ ID NO:2). Both α and β-subunits are arranged in 8 helical segments (referred to as helix A-G). Each globin chain also contains a covalently bound heme molecule, composed of a porphyrin ring and an iron (Fe (II)) ligand located between helix E and F of the globin protein. Hemoglobin A constitutes approximately 97% of adult hemoglobin. Hemoglobin A2 is minor adult hemoglobin consisting of 2 α-globins and 2 δ-globins. The predominant fetal hemoglobin F consists of 2 α-globins and 2 γ-globins and is sometimes seen in neonates and adults.

Hemoglobin constitutes almost 90% of the dry weight of mature erythrocytes (e.g., red blood cells) and is responsible for the transport of oxygen and carbon dioxide between the lungs and body tissue. The heme-bound iron must be in the ferrous oxidation state, e.g., Fe(II), for hemoglobin to bind oxygen reversibly. Oxyhemoglobin can undergo autooxidation to methemoglobin (HbFe(III)) and higher oxidation states in the presence of other oxidants. In vivo, the methemoglobin concentration is less than 1.5% that of ferrous hemoglobin. Sometimes the intracellular mechanisms (e.g., cytochrome b5 methemoglobin reductase, glutathione, or nicotinamide adenine dinucleotide phosphate flavin reductase) fail to maintain hemoglobin in the ferrous state due to genetic abnormalities, or the presence of toxins or drugs, rendering the hemoglobin nonfunctional. Hemolytic anemia releases hemoglobin from erythrocytes where the free hemoglobin in circulation is subject to oxidative denaturation. Oxidation of hemoglobin has been problematic in the production and storage of hemoglobin-based blood substitutes.

Determination of hemoglobin concentration is an essential part of the blood donation process as an aid in eliminating harm to both anemic donors and potential transfusion recipients. Current standards require that donors have a minimum hemoglobin concentration of 12.5 g/dL (e.g., 0.0019 mol/L) corresponding to hematocrit of 38% or greater.

The determination of total hemoglobin concentration is also useful in assays reporting % hemoglobinA1c for monitoring blood glucose control.

The determination of hemoglobin in plasma is a sensitive measure of damage to the red blood cells during blood collection for clinical analysis, use of cardiovascular or hemodialysis medical devices, or during the processing of blood products (for example, packed red blood cells, plasma). Normally the concentration of hemoglobin in plasma is less than 10 mg/dL (1.6 μmol/L).

Methods for measuring the concentration of hemoglobin have been reviewed (See, Malinauskas, R. A. Artif. Organs, 21, 1255-67 (1997)). Briefly, methods may be classified as direct optical techniques that measure the absorbance of undiluted oxyhemoglobin at a wavelength of 577 nm (e.g., Cripps, Kahn, Porter, Shinowara and first derivative methods); direct optical techniques that measure the absorbance of diluted hemoglobin at a wavelength of 415 nm (Harboe and Fairbanks All methods); and chemical methods such as Drabkin the method supported by international standards (See, Lewis S. M., Kumari S., Guidelines on Standard Operating Procedures for HAEMATOLOGY. Chapter 7—Haemoglobinometry. New Delhi World Health Organization, 1999). The Drabkin method converts most forms of hemoglobin to cyanomethemoglobin (HiCN) by treatment with buffered potassium ferricyanide, K3Fe(CN)6 and potassium cyanide. To quantify the concentration of hemoglobin, the absorbance at a wavelength of 540 nm is measured and compared to the International HiCN standard.

The method exemplified in the commercial Multigent Hemoglobin A1c Assay (Abbott Laboratories, List 02K96-20) converts digests hemoglobin with pepsin to give hematin which can be quantified at a wavelength of 604 nm.

Alternatively, assays for quantifying hemoglobin have been reported which are based on the use of hemoglobin to act as a catalyst for the oxidation of a chromogenic substrate in the presence of added hydrogen peroxide. Suitable substrates include for example, tetramethylbenzidene, o-toluidine, chlorpromazine, dianisidine and leucomalachite green (See, Malinauskas, R. A. Artif. Organs, 21, 1255-67 (1997)). The absorbance of the oxidized substrate is proportional to the concentration of hemoglobin present.

Similarly, chemiluminescent assays for hemoglobin rely on the hemoglobin-catalyzed oxidation of luminol (See, Tatsu, Y.; Yoshikawa, S. Anal Chem., 62, 2103-6 (1990)) or iso-luminol (Olsson, T.; Bergstrom, K.; Thore, A. Clinica Chimica Acta, 122:125 (1982)) in the presence of added hydrogen peroxide to generate a light signal proportional to the concentration of hemoglobin present.

Weak chemiluminescence has been reported from hemoglobin and methemoglogin upon reaction with hydrogen peroxide (See, Lissi, E. A.; Escobar, J.; Pascual, C.; del Castillo, M.; Schmitt, T. H.; Di Mascio, P. Photochem. Photobiol., 60:405-11 (1994); Nohl, H.; Stolze, K. Free Radic Biol Med., 15, 257-63 (1993)). The mechanism remains unresolved (See, Yoshiki, Y.; Iida, T.; Okubo, K.; Kanazawa, T. Photochem. Photobiol., 73, 545-50 (2001)).

A chemiluminescent hemoglobin assay is described in WO 98/54578. Briefly, the hemoglobin content of a sample is determined by chemiluminescence based on the ability of hemoglobin to absorb radiation emitted by the chemiluminescent reaction of lucigenin and hydrogen peroxide. The concentration of hemoglobin is inversely related to the chemiluminescent signal.

A chemiluminescent assay for glycated hemoglobin fraction (See, Adamczyk, M.; Chen, Y.-Y.; Johnson, D. D.; Mattingly, P. G.; Moore, J. A.; Pan, Y.; Reddy, R. E. Bioorg. Med. Chem. Lett., 16, 1324-8 (2006)) consisted of i) the conversion of all hemoglobin fractions to methemoglobin, ii) formation of an acridinium-9-carboxamide boronate/glycated hemoglobin complex, iii) initiating the chemiluminescent signal by the addition of excess hydrogen peroxide and base. The concentration of the glycated fraction of hemoglobin inversely related to the chemiluminescent signal.

There is a need in the art for new methods for determining the concentration of hemoglobin in test samples that do not employ toxic chemicals (such as potassium cyanide and potassium ferricyanide) and that exhibit improved sensitivity.

SUMMARY

In one aspect, the present invention relates to a method of detecting hemoglobin in a test sample. The method comprises the steps of:

a) adding at least one basic solution to a test sample;

b) adding an indicator solution to the test sample to generate a light signal, wherein the indicator solution comprises at least one acridinium compound,

wherein steps a) and b) can be performed in any order; and

c) measuring the light generated to detect the hemoglobin in the test sample.

In the above method, the test sample can be a non-biological forensic sample, stool, whole blood, serum, plasma, interstitial fluid, saliva, ocular lens fluid, cerebral spinal fluid, sweat, urine, ascites fluid, mucous, nasal fluid, sputum, synovial fluid, peritoneal fluid, vaginal fluid, menses, amniotic fluid, semen, soil or a blood substitute.

In the above method, the basic solution is a solution having a pH of at least about 10.

In the above method, any acridinium compound can be used. For example, the acridinium compound can be an acridinium-9-carboxamide having a structure according to formula I:

wherein R1 and R2 are each independently selected from the group consisting of: alkyl, alkenyl, alkynyl, aryl or aralkyl, sulfoalkyl, carboxyalkyl and oxoalkyl, and wherein R3 through R15 are each independently selected from the group consisting of: hydrogen, alkyl, alkenyl, alkynyl, aryl or aralkyl, amino, amido, acyl, alkoxyl, hydroxyl, carboxyl, halogen, halide, nitro, cyano, sulfo, sulfoalkyl, carboxyalkyl and oxoalkyl; and optionally, if present, X⊖ is an anion.

Alternatively, the acridinium compound is an acridinium-9-carboxylate aryl ester having a structure according to formula II:

wherein R1 is an alkyl, alkenyl, alkynyl, aryl or aralkyl, sulfoalkyl, carboxyalkyl and oxoalkyl; and

wherein R3 through R15 are each independently selected from the group consisting of: hydrogen, alkyl, alkenyl, alkynyl, aryl or aralkyl, amino, amido, acyl, alkoxyl, hydroxyl, carboxyl, halogen, halide, nitro, cyano, sulfo, sulfoalkyl, carboxyalkyl and oxoalkyl; and

optionally, if present, X⊖ is an anion.

In the above method, the indicator solution can further comprise at least one surfactant.

In the above method, the method can further comprise measuring the amount of hemoglobin in the test sample by relating the amount of light generated in the test sample by comparison to a standard curve for hemoglobin or to a reference standard. Optionally, the standard curve can be generated from solutions of hemoglobin of a known concentration.

In another aspect, the present invention relates to a method of detecting hemoglobin in a test sample. The method comprises the steps of:

a) adding at least one basic solution to a test sample; and

b) measuring the current generated at at least one electrode to detect the hemoglobin in the test sample.

In the above method, the test sample is a non-biological forensic sample, stool, whole blood, serum, plasma, interstitial fluid, saliva, ocular lens fluid, cerebral spinal fluid, sweat, urine, ascites fluid, mucous, nasal fluid, sputum, synovial fluid, peritoneal fluid, vaginal fluid, menses, amniotic fluid, semen, soil or a blood substitute.

In the above method, the basic solution is a solution having a pH of at least about 10.

In another aspect, the present invention relates to method of diagnosing a subject suffering from a genetic disorder relating to hemoglobin metabolism. The method comprises the steps of:

a) adding at least one basic solution to a test sample obtained from a subject suspected of suffering from a genetic disorder relating to hemoglobin metabolism;

b) adding an indicator solution to the test sample to generate a light signal, wherein the indicator solution comprises at least one acridinium compound,

wherein steps a) and b) can be performed in any order;

c) quantifying the light generated to detect the hemoglobin in the test sample; and

d) determining the concentration of hemoglobin in the test sample based on the amount of light quantified in step c); and

e) comparing the concentration of hemoglobin in step (d) with a predetermined level, wherein if the concentration of hemoglobin determined in step (d) is lower or higher than the predetermined level, then a determination is made that the subject is suffering from a genetic disorder relating to hemoglobin metabolism.

In the above method, the test sample can be serum, plasma, whole blood, red blood cells and umbilical cord blood.

In the above method, the basic solution is a solution having a pH of at least about 10.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Methods and kits for detecting hemoglobin in test samples patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Methods and kits for detecting hemoglobin in test samples or other areas of interest.
###


Previous Patent Application:
Fish cancer model
Next Patent Application:
Methods of developing terpene synthase variants
Industry Class:
Chemistry: molecular biology and microbiology
Thank you for viewing the Methods and kits for detecting hemoglobin in test samples patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 1.11228 seconds


Other interesting Freshpatents.com categories:
Amazon , Microsoft , IBM , Boeing Facebook

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.3963
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120270258 A1
Publish Date
10/25/2012
Document #
13532905
File Date
06/26/2012
USPTO Class
435 29
Other USPTO Classes
436 66
International Class
01N21/76
Drawings
8


Genetic Disorder


Follow us on Twitter
twitter icon@FreshPatents