FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: December 09 2014
newTOP 200 Companies filing patents this week


Advertise Here
Promote your product, service and ideas.

    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Your Message Here

Follow us on Twitter
twitter icon@FreshPatents

Systems and methods for analyzing nucleic acid sequences

last patentdownload pdfdownload imgimage previewnext patent

20120270206 patent thumbnailZoom

Systems and methods for analyzing nucleic acid sequences


The invention relates to systems and methods for analyzing clinically relevant nucleic acid sequences.

Browse recent University Of Massachusetts patents - Shrewsbury, MA, US
Inventors: Edward I. Ginns, Marzena Galdzicka
USPTO Applicaton #: #20120270206 - Class: 435 5 (USPTO) - 10/25/12 - Class 435 
Chemistry: Molecular Biology And Microbiology > Measuring Or Testing Process Involving Enzymes Or Micro-organisms; Composition Or Test Strip Therefore; Processes Of Forming Such Composition Or Test Strip >Involving Virus Or Bacteriophage



view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120270206, Systems and methods for analyzing nucleic acid sequences.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Nos. 60/493,238, filed on Aug. 6, 2003, and 60/568,958, filed on May 7, 2004. The contents of both of those provisional applications is incorporated herein by reference in its entirety.

TECHNICAL FIELD

This invention relates to systems and methods for analyzing clinically relevant nucleic acid sequences.

BACKGROUND

The healthcare delivery system has changed remarkably over the past several decades. Clinical laboratories are under increasing pressure to deliver low cost and highly accurate analytical services with the rapid turn-around time required by physicians and patients. Laboratory testing has changed and improved in recent years to meet the challenge. Robotics has been introduced to the laboratory to increase efficiency and reduce the need for human participation, and laboratory instruments have been designed to decrease the biological sample volumes needed to perform various assays. However, more improvement in the clinical laboratory area is required to meet the demands of the ever-changing healthcare system.

SUMMARY

The present invention provides novel automated systems and methods to perform assays on nucleic acid sequences (e.g., clinically relevant nucleic acid sequences). The system can provide assay results quickly, accurately, and in a format easily accessible by health care providers and/or third party payors (e.g., insurance companies). The invention also provides novel and highly accurate assays using mass spectrometry (e.g., matrix-assisted laser desorption/ionization (MALDI)).

In one aspect, the invention provides a system for performing a diagnostic assay on a biological sample. The system includes, as its main components (a) a central controller programmed to: (i) exchange information about the biological sample with an outside system or database; and (ii) exchange information about the biological sample with one or more modules of the system; (b) a sample transfer module for transferring a portion of the sample to a first container; (c) a nucleic acid extraction module for extracting nucleic acids from cells within the portion and for transferring the portion from the first container to a second container; (d) a nucleic acid measurement module for measuring the concentration of nucleic acids in the portion; (e) a PCR preparation module for adding polymerase chain reaction (PCR) reaction materials (e.g., individual nucleotides, primers, polymerase enzymes, and reagents) to the portion; (f) a thermocyling module for amplifying a target sequence and extending a primer in the portion; (g) a primer extension preparation module for adding primer extension reaction materials to the portion; (h) a mass spectrometry preparation module for removing a sample of the portion from the second container to a support (e.g., chip or microwell) for analysis by mass spectrometry; and (i) a mass spectrometry module for analyzing the sample.

The central controller can be a computer system, e.g., a commercially available personal computer system, and can include linking software that enables the central controller to communicate with at least one other module in the system. The system can also include a plate editor module that provides sample information to the PCR preparation module, a transport module comprising one or more robotic arms or tracks to transport a biological sample, or portion thereof, between at least two modules of (a) to (i), and arranged to receive information from and transmit information to the central controller. The system can also include a detection module for detecting the presence of a sample and monitoring the progress of the sample through the system, and arranged to receive information from and transmit information to the central controller. The nucleic acids measurement system can include an ultraviolet light spectrophotometer or a fluorometer. The PCR preparation module can include a pipetting robot, and the thermocycling system can include a thermocyler. The system can further include a computer-readable medium comprising one or more programs for instructing a given module.

The PCR preparation module can include PCR materials, e.g., at least one primer set described herein, e.g., a primer set selected from among SEQ ID NOS:1 to 504, each primer set including two amplification primers and one detection extension primer. The sample transfer system can include a pipetting robot.

In another aspect, the invention provides a method of performing a diagnostic assay on a biological sample. The method includes (a) performing on a biological sample an assay using a clinical assay system, wherein the assay comprises mass spectrometry analysis of a target nucleic acid; and (b) automatically reporting information about the assay from a central controller of the clinical assay system to an outside system or database accessible by at least one health care provider (e.g., at least 2, 10, or more than 10) or at least one third party payor (e.g., at least 2, 10, or more than 10). The clinical assay system can include at least one component selected from the group consisting of: a central controller, a sample transfer module, a nucleic acid extraction module, a nucleic acid measurement module, a PCR preparation module, a thermocyling module, a primer extension preparation module, a mass spectrometry preparation module, and a mass spectrometry module.

In another aspect, the invention provides a method of performing a diagnostic assay on a biological sample. The method includes (a) receiving a biological sample, generating information about the biological sample, and transmitting the information to a central controller; (b) transferring a portion of the biological sample to a first container; (c) extracting nucleic acids from cells within the portion and transferring the portion to a second container; (d) measuring the concentration of extracted nucleic acids in the portion; (e) adding polymerase chain reaction (PCR) materials to the portion; (f) amplifying target nucleic acids in the portion; (g) adding primer extension reaction materials to the portion; (h) extending a detection extension primer in the portion; (i) transferring a sample of the portion from the second container to a support; (j) analyzing the sample and exporting data to the central controller using a mass spectrometry system; and (k) transmitting the data from the central controller to an output device, external system, or database. In certain embodiments, steps (a) to (k) can be performed automatically by an automated system. The automated system can include at least one component selected from the group consisting of: a central controller, a sample transfer module, a nucleic acid extraction module, a nucleic acid measurement module, a PCR preparation module, a thermocyling module, a primer extension preparation module, a mass spectrometry preparation module, and a mass spectrometry module.

In certain embodiments, the diagnostic assay can be an assay for detecting mutations in a gene. The gene can be a gene selected from the group consisting of: 5,10-Methylenetetrahydrofolate Reductase (MTFR); Coagulation Factor II; Coagulation Factor V; hemochromatosis (HFE); and a glucocerebrosidase (GC). fibroblast growth factor receptor 3; aspartoacylase; Glucocerebrosidase; Coagulation Factor VII; Fanconi Anemia, Complementation Group C (FANCC); inhibitor of kappa light polypeptide gene enhancer in b cells, kinase complex-associated protein; acid sphingomyelinase; hexosaminidase; angiotensin i-converting enzyme; adenylate cyclase 9; apolipoprotein A-1; apolipoprotein E; endothelial leukocyte adhesion molecule 1; fc fragment of IGG, low affinity IIa, receptor; fibrinogen beta chain; coagulation factor II, factor XIII; guanine nucleotide-binding protein beta-3; integrin, alpha-2, glycoprotein Ia/Iia; glycoprotein Ib, platelet, alpha polypeptide; intercellular adhesion molecule 1; glycoprotein Ia/IIa (a2), integrin, alpha-2; platelet glycoprotein Iib, integrin, alpha-2b; glycoprotein integrin, beta-3,3-hydroxy-3-methylglutaryl-coa reductase; lymphocyte adhesion molecule 1; methylene tetrahydrofolate reductase; plasminogen activator inhibitor 1; platelet alpha-granule membrane protein; transforming growth factor-beta receptor, type III; thrombomodulin; tumor necrosis factor; vascular cell adhesion molecule; coagulation factor II receptor; glycoprotein VI, platelet; purinergic receptor P2Y, g protein-coupled, 1; purinergic receptor P2Y, G protein-coupled, 12; prostaglandin-endoperoxide synthase 1; prostaglandin-endoperoxide synthase 2; thromboxane A2 receptor, platelet; and thrombospondin I.

In other embodiments, the diagnostic assay is an assay for detecting a pathogen in the sample, e.g., a virus, bacterium, or fungus. The virus can be a virus of the family Herpesviridae, e.g., cytomegalovirus (CMV).

In another aspect, the invention provides an method, e.g., an automated method, for detecting mutations in a target gene. The method includes a) amplifying a target sequence using PCR and performing, e.g., automatically, a primer extension reaction using a set of three primers, each set of primers including two amplification primers and one detection extension primer; b) transferring, e.g., automatically, detection extension primers to a mass spectrometry device; and c) determining, e.g., automatically, the molecular weights of the detection extension primers by mass spectrometry following the primer extension reaction, wherein a change in the molecular weight of the extended primer, as compared to a control, indicates the presence of a mutation in the gene. The method can include automatically transmitting information related to the presence of the mutation to a central controller.

In certain embodiments, the gene is a 5,10-Methylenetetrahydrofolate Reductase (MTFR) gene, and the set of three primers is selected from the group consisting of: SEQ ID NOS: 1, 2, and 3; SEQ ID NOS: 4, 5 and 6; SEQ ID NOS: 7, 8, and 9; and SEQ ID NOS: 10, 11, and 12; each set of primers including two amplification primers and one detection extension primer.

In other embodiments, the gene is a Coagulation Factor II gene, and the set of three primers is selected from the group consisting of: SEQ ID NOS: 13, 14, and 15 and SEQ ID NOS: 16, 17 and 18; each primer set including two amplification primers and one detection extension primer.

In still other embodiments, the gene is a Coagulation Factor Vgene, and the set of three primers is selected from the group consisting of: SEQ ID NOS: 19, 20, and 21 or SEQ ID NOS: 22, 23 and 24; each primer set including two amplification primers and one detection extension primer.

In yet other embodiments, the gene is a hemochromatosis (HFE) gene, and the set of three primers is selected from the group consisting of: SEQ ID NOS: 40, 41, and 42, SEQ ID NOS: 43, 44 and 45; SEQ ID NOS: 46, 47 and 48; SEQ ID NOS: 49, 50 and 51; SEQ ID NOS: 52, 53 and 54; or SEQ ID NOS: 55, 56 and 57; each set of primers including two amplification primers and one detection extension primer.

In another aspect, the invention includes a method, e.g., an automated method, for detecting a pathogen in a biological sample. The method includes a) amplifying a target sequence using PCR and performing, e.g., automatically, a primer extension reaction using a set of three primers, each set of primers including two amplification primers and one detection extension primer; b) transferring, e.g., automatically, detection extension primers to a mass spectrometry device; and c) determining, e.g., automatically, the molecular weights of the detection extension primers by mass spectrometry following the primer extension reaction, wherein a change in the molecular weight of the extended primer, as compared to controls, indicates the presence of a pathogen in the sample. The controls can include an internal control for determining the amount of the pathogen in the sample.

In some embodiments, the pathogen is cytomegalovirus (CMV), and the three primers are selected from the group consisting of: SEQ ID NOS: 25, 26, and 27; SEQ ID NOS: 28, 29 and 30; SEQ ID NOS: 31, 32, and 33; SEQ ID NOS: 34, 35, and 36; SEQ ID NOS: 37, 38, and 39; and SEQ ID NOS: 58, 59, and 60; each primer set including two amplification primers and one detection extension primer.

In another aspect, the invention includes an isolated DNA selected from the group consisting of SEQ ID NOS:1 to 504.

In still another aspect, the invention includes a kit that includes at least one primer set described herein, e.g., a primer set selected from among SEQ ID NOS:1 to 504, each primer set including two amplification primers and one detection extension primer, and instructions for using the primer set to detect or analyze a target nucleic acid sequence in a biological sample. For example, instructions can be provided to describe how to use the primers to detect the presence of, or identify mutations in, a particular nucleic acid sequence or gene. As another example, the instructions can describe how to use the primers to detect the presence of a pathogen (e.g., a virus, bacterium, and/or fungus), the quantity of the pathogen, and/or the genotype of the pathogen.

In yet another aspect, the invention includes a computer readable medium that includes a program for instructing a central controller in an automated system for performing an assay on a biological sample to: (a) receive a biological sample, generate information about the biological sample, and transmit the information into a central controller; (b) transfer a portion of the biological sample to a first container; (c) extract nucleic acids from cells within the portion and transfer the portion to a second container; (d) measure the concentration of extracted nucleic acids in the portion; (e) add polymerase chain reaction (PCR) materials to the portion; (f) amplify target nucleic acids in the portion; (g) add primer extension reaction materials to the portion; (h) extend a detection extension primer in the portion; (i) transfer a sample of the portion from the second container to a support; (j) analyze the sample and exporting data to the central controller using a mass spectrometry system; and (k) transmit the data from the central controller to an output device, external system, or database.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and equipment or software similar or equivalent to those described herein can be used in the practice of the present invention, suitable methods, equipment, and software are described below. All publications and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features and advantages of the invention will be apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram illustrating the main components of a clinical assay system and the flow of biological samples and information through the system.

FIG. 2 is a flow diagram illustrating the steps of the clinical assay system.

FIG. 3 is a mass spectrum of a heterozygous “TC” allele (heterozygous positive) generated using a screen for a C677T mutation in the 5,10-Methylenetetrahydrofolate Reductase (MTFR) gene.

FIG. 4 is a mass spectrum of a heterozygous “GA” allele (heterozygous positive) generated using a screen for a G20210A mutation in the Coagulation Factor II (FII) gene.

FIG. 5 is a mass spectrum of a heterozygous “GA” allele (heterozygous positive) generated using a screen for a R506Q mutation in the Coagulation Factor V gene.

FIG. 6 is a mass spectrum of a heterozygous “GA” allele (heterozygous positive) generated using a screen for a R506Q mutation in the Coagulation Factor V gene.

FIG. 7 is a mass spectrum of heterozygous “GC” alleles (heterozygous positive) for H63D Histidine to Aspartic acid (C187G) mutation in the FM3-E assay.

FIG. 8 is a mass spectrum of heterozygous “GC” alleles (heterozygous positive) for H63D Histidine to Aspartic acid (C187G) mutation in the HFE-E3 assay.

FIG. 9 is a mass spectrum of heterozygous “GA” alleles (heterozygous positive) for S65C Serine to Cysteine (A193T) mutation in the HFE S65C E1 assay.

FIG. 10 is a mass spectrum of heterozygous “GA” alleles (heterozygous positive) for S65C Serine to Cysteine (A193T) mutation in the FIFE S65C E5 assay.

FIG. 11 is a mass spectrum of heterozygous “GA” alleles (heterozygous positive) for C282Y cysteine to tyrosine (G845A) mutation in the FM6-E assay.

FIG. 12 is a mass spectrum of heterozygous “GA” alleles (heterozygous positive) for C282Y cysteine to tyrosine (G845A) mutation in the HFE-E6 assay.

FIG. 13A1-13A3 is a set of mass spectra in a CMV quantitative assay on samples containing 400 CMV copies/ml.

FIG. 13B1-13B3 is a set of mass spectra in a CMV quantitative assay on samples containing 4000 CMV copies/ml.

FIG. 13C1-13C3 is a set of mass spectra in a CMV quantitative assay on samples containing 40,000 CMV copies/ml.

FIG. 13D-13D3 is a set of mass spectra in a CMV quantitative assay on samples containing 400,000 CMV copies/ml.

FIG. 13E1-13E3 is a set of mass spectra in a CMV quantitative assay on samples containing 4,000,000 CMV copies/ml.

FIG. 13F1-13F3 is a set of mass spectra in a CMV quantitative assay on samples containing 40,000,000 CMV copies/ml.

FIG. 13G1-13G3 is a set of mass spectra in a CMV quantitative assay on samples containing 400,000,000 CMV copies/ml.

FIG. 14 is a graph that plots CMV plasma samples versus internal standards. A CMV control (4×109 copies per ml) was diluted down to 40 copies/ml in 10-fold increments, mixed with the Internal Standard of appropriate concentration, extracted (240 μl) on MDX (Qiagen), eluted in 75 μl of buffer and assayed (2 μl) by PCR, followed by SAP treatment, extension reaction and mass spectrometry analysis.

FIG. 15A-15GG is a table that lists a number of genetic targets for the assays of the invention, along with exemplary primers for those targets.

DETAILED DESCRIPTION

The invention provides a new highly automated system for performing clinical assays, optionally with automatic billing to third party providers such as insurance companies. The invention also provides novel assays using mass spectrometry (e.g., matrix-assisted laser desorption/ionization (MALDI). The assays are highly accurate and can detect, for example, sequence variations (e.g., mutations and/or polymorphisms) and foreign sequences (e.g., viral sequences) incorporated into a target gene. The assays are also useful for infectious disease/pathogen testing.

The entire process, or portions thereof, can be automated, i.e., performed by machine(s). Accordingly, the present invention also includes a high-throughput process for performing the assays described herein. Thus, the new system can perform dozens (e.g., 96, 128, 384) of different assays on dozens of different biological samples at the same time.

Clinical Assay System

Overview of System

FIG. 1 provides an overview of the clinical assay system 2 of the present invention. The clinical assay system includes, as its main components, the following modules. A central controller 4 for exchanging information about the biological sample with an outside system or database 8 and with one or more modules or systems within clinical assay system, and an input device 6; a sample transfer system 10 for transferring a portion of the sample to a first container; a nucleic acid extraction system 12 for extracting nucleic acids from the portion and for transferring the portion from the first container to a second container; a nucleic acid measurement system 14 for measuring the concentration of nucleic acids in the portion; a PCR preparation system 16 for adding polymerase chain reaction (PCR) reaction materials to the portion; a thermocycling system 18 for amplifying a target sequence and extending a primer in the portion; a primer extension preparation system 20 for adding primer extension reaction materials to the portion; a mass spectrometry preparation system 22 for removing a sample of the portion from the second container to a platform for analysis by mass spectrometry; and a mass spectrometry system 24 for analyzing the sample.

The central controller is capable of controlling one or more system modules, collecting and organizing data obtained from one or more of the system modules and an outside system or database, and of sending data to one or more of the system modules and an outside database (e.g., a database accessible by healthcare providers or third parties) or system (e.g., an outside computer through which health care providers or third parties can access the data). The input device 6 associated with the central controller can be a bar code reader. The system can optionally include a detection system 5 for detecting and tracking a sample as it progresses through the system. The system can also include a transport subsystem 25, e.g., a system of one or more robotic arms and/or tracks, for transporting samples between two or more modules within the system.

Central Controller

Typically, the central controller 4 is a computer system. The computer systems that can be used are commonly available personal computers having read-write memory, or industrial counterparts thereof. The central controller is provided with a suitable input device 6 such as a keyboard, touch screen, card reader, bar code scanner, or another computer (e.g., for inputting biological sample processing instructions and patient identification information).

The central controller 4 is run by linking software, which directs the central controller to receive information from, and/or transmit information to, each of the modules in the overall system. For example, the central controller can be configured to exchange information with one or more modules within the clinical assay system, and to relay that information to one or more other modules. Such information may include information about a biological sample, e.g., sample identification, information as to which assay(s) is to be/has been performed on a sample, and the location of a sample within the clinical assay system and within a given batch of samples being processed.

The central controller 4 is also configured to exchange information with outside systems and/or databases 8 (i.e., systems or databases not part of the clinical assay system). This configuration allows the central controller to report, e.g., the results of the clinical assays described herein, along with other data, e.g., billing amounts, patient identification, and other data to health-care providers (e.g., technicians, nurses, physicians) and/or third parties (e.g., insurance providers) at other sites. Reporting can occur automatically. Exemplary of outside systems are systems capable of interfacing directly with the central controller, or with a database accessible by both the outside system and the central controller. For example, Meditech™ provides a laboratory application that allows multisite and/or multifacility specimen tracking, through which the central controller can exchange information with outside systems.

Sample Transfer Module

The sample transfer system 10 can be any system capable of receiving a biological sample, e.g., a blood sample, removing an aliquot of the sample, and placing the aliquot into one or more receptacles. Exemplary systems are pipetting robots, such as the Genesis® Freedom™ Automated Workstation. The system is capable of scanning sample tube barcodes and multiwell (e.g., 96-well) plates, and creating a file that indicates where on the multiwell plate a sample is located following the transfer. The file can include information such as the barcodes of scanned sample tubes, the location of these samples on the multiwell plate, the volume transferred from the sample tube to the plate, and overall identifying information (e.g., a barcode) for of the multiwell plate (called DNA plate).

Nucleic Acid Extraction Module

The nucleic acid extraction system 12 can be any system capable of carrying out techniques, such as those described herein, for purifying nucleic acids (i.e., DNA and/or RNA) from one or more biological samples. An example of such a system is the BioRobot® MDx produced by Qiagen.

Nucleic Acids Measurement Module

The nucleic acids measurement system 14 can be any system capable of measuring the concentration of nucleic acids in a sample. For example, the system can be a commercially available ultraviolet (UV) light spectrophotometer, which is capable of determining the concentration of nucleic acids using optical density measurements. As another example, the system can be capable of measuring the UV-induced fluorescence of dye (e.g., ethidium bromide or Pico Green) intercalated into the nucleic acid, such as a fluorometer. The Genesis® Freedom™ Automated Workstation produced by Tecan can include such a fluorometer. The nucleic acid measurement system can be associated with (e.g., a part of) the sample transfer system, or it can be a stand-alone module.

PCR Preparation Module

The PCR preparation system 16 can be any system capable of adding appropriate materials, e.g., enzymes (e.g., Taq polymerase), nucleic acid primers, individual nucleotides, and reagents, to an aliquot in preparation for amplifying a target sequence in the aliquot. The PCR preparation also prepares appropriate control reaction mixes. Examples of such systems are the Genesis® Automated Workstation and the Tecan TeMO™ multi-pipetting module.

Overall, the PCR preparation system is capable of performing at least two steps. The first is to dispense appropriate assay mixes. Assay mixes can be prepared by an individual, e.g., a technician, or by a robot, according to typical laboratory procedures, and placed into holders. These PCR preparation system dispenses the mixes from the holders to a position on a second multiwell (e.g., 384) plate, according to instructions (e.g., sample identification and assays to be performed) it receives from a plate editor 7 (described in detail below). The second is to add samples to the appropriate assay mix. Using the file received by the PCR preparation system 16 from the sample transfer system 10, the PCR preparation system transfers samples from the first multiwell (e.g., 96 well) plate to the second multiwell (e.g., 384 well) plate. In this way, the PCR preparation system is able to transfer samples from a first plate to a second plate, while keeping track of the location of the samples, and to ensure that the appropriate assays are performed on each sample.

Thermocycling Module

The thermocycling system 18 can be any system capable of performing PCR reactions, e.g., PCR amplification and/or primer extension reactions, and is typically a commercially available thermocycler. Exemplary systems include the GeneAmp PCR System 9700 manufactured by Applied Biosystems, the Perkin Elmer 2000 PCR thermocycler, and the PTC-200 thermocycler manufactured by MJ Research.

Primer Extension Preparation Module

The primer extension preparation system 20 can be any system capable of adding appropriate materials, e.g., Shrimp Alkaline Phosphatase (SAP; to dephosphorylate unincorporated dNTPs), extension primers (e.g., the extension primers described herein), and appropriate mixtures of dNTPs and ddNTPs, to an aliquot in preparation for performing primer extension reactions. An exemplary system is the Multimek™ manufactured by Beckman-Coulter

Mass Spectrometry Preparation Module

The mass spectrometry preparation system 22 can be any system capable of removing a sample of an aliquot and placing the sample on a support, e.g., a chip, for analysis by mass spectroscopy. The support can be composed of any material known to those skilled in the art to be usable in mass spectrometry, e.g., silicon, plastic, glass, and/or ceramic. A wide variety of chips are commercially available. Exemplary of chips is the Sequenom® SpectroCHIP™, which is supplied in 384 well format and are pre-spotted with a specially formulated matrix assisted laser desorption ionization (MALDI) matrix. The matrix can be of any composition known in the art of mass spectrometry, e.g., α-cyano-4-hydroxy cinnamic acid (CHCA), 2,4,6-trihydroxy acetophenone (THAP), or 3-dydroxypicolinic acid (3-HPA) in ammonium citrate, the choice of which will depend, e.g., on the mass spectrometry system used and the assay to be performed. Exemplary of the mass spectrometry preparation systems is the Sequenom® SpectroPOINT™, a nanoliter sample dispensing instrument.

Mass Spectrometry Module

The mass spectrometry system 24 can be any commercially available mass spectrometer. The clinical assay system of the present invention can be configured to utilize mass spectrometer formats including matrix assisted laser desorption ionization (MALDI), electrospray (ES), ion cyclotron resonance (ICR) and Fourier Transform. In one embodiment, maMALDI is utilized in the clinical assay system of the present invention. An exemplary mass spectrometry system is the Sequenom® Autoflex™ Mass Spectrometer.

With MALDI mass spectrometry, various mass analyzers can be used, e.g., magnetic sector/magnetic deflection instruments in single or triple quadrupole mode (MS/MS), Fourier transform and time-of-flight (TOF) configurations as is known in the art of mass spectrometry. For the desorption/ionization process, numerous matrix/laser combinations can be used. Ion-trap and reflectron configurations can also be employed. In one embodiment of the present invention, MALDI-TOF is employed to analyze the biological samples.

Transport Subsystem

Optionally, the clinical assay system includes a transport system 25. The transport system can be capable of (i) transporting containers, e.g., containing biological samples, from a source (e.g., a separate site in which biological samples are obtained from a patient) to the clinical assay system; (ii) transporting containers between at least two modules within the clinical assay system; and/or (iii) transporting containers away from the clinical assay system to a predefined destination after completion of the assay. The transport system is capable of communicating with the central controller so the central controller can direct the transport system and/or receive information as to the location of sample within the clinical assay system. The transport system can comprise one or more robotic arms or tracks, or a combination of robotic arms and tracks.

Detection System

Optionally, the clinical assay system includes a detection system 5 for detecting the presence of a biological sample and monitoring the progress of the sample through the system. The detection system is capable of receiving information from and transmitting information to the central controller. The detection system can include a network of sensors, e.g., barcode readers, reed switches, weight systems (where the detector detects the presence of a sample by its weight); or optical interrupters, or combinations thereof, arranged throughout the clinical assay system, each of which are capable of transmitting information, directly or indirectly, to the central controller.

Software

The clinical assay system includes novel software for adapting one or more modules to be used in the system. For example, the central controller includes a novel software program to provide an interface between itself and an outside system or database (e.g., Meditech). In addition to causing the central controller to receive data from an outside source, the software causes the central controller to send information (e.g., automatically) about the clinical assays (e.g., the results and/or billing information) to at least one outside system (e.g., a computer not associated with the clinical assay system) or at least one outside database (e.g., a Meditech database). This configuration allows the clinical assay system to directly report results and billing information to at least one healthcare provider, at least one third party payor (e.g., an insurance company), or to both.

Optionally, the software can be written such that the central controller performs a final check of assay results before sending to the outside system or database, halting transmission of the data and/or alerting a technician of potential problems with the results. For example, where two samples from the same patient are submitted for duplicate analyses by the clinical assay system, the interface program can include a checking scheme to ensure that the results of the duplicate analyses agree with each other. If the duplicates do not agree (e.g., where both a positive and a negative result are reported to the central controller by the clinical assay system), the interface program can halt transmission of the results so that the mass spectroscopy data can be reanalyzed or to allow the assays to be performed again.

The central controller also includes a software program for linking at least one other module of the system to the central controller (“linking software”). The module(s) also include linking software allowing the module(s) to communicate with the central controller. For example, the linking software can allow the central controller to control the module (e.g., to instruct the module as to when and whether to execute a function), and to provide to the module(s) information about the biological sample (e.g., the tests to be performed on the sample). The linking software also allows the central controller to receive information from the module(s), e.g., assay results, information about the location of the sample, and the like.

Also included within the clinical assay system is plate editor software 7. The plate editor software can be loaded on the central controller and/or on a separate computer, e.g., a second computer system. The plate editor software can receive information from an outside system or database, such as patient information, tests to be performed, billing information, etc., and create a file that maps on a hypothetical 384-well plate where each assay for each sample will be located, and links this location to all data and information associated with each assay (one sample can have several assays, e.g., 1, 2, 3, or 4 assays). In this way, the plate editor software “maps out,” in advance of processing a batch of samples through the clinical assay system, an arrangement of assays on a 384-well plate. This file can be used by other modules in the system, e.g., the sample PCR preparation system and the mass spectrometry system, to track the samples and their associated assay results as they move through the system.

Also included is a relational database 9, e.g., Oracle software. Like the plate editor software, the relational database can be loaded on the central controller and/or a separate controller, e.g., a second computer system. The relational database stores information from the plate editor and from an outside database or system (e.g., Meditech), and can be accessed by the outside system or database.

The sample transfer system 10 can include software causing it to receive at least one biological sample (e.g., a batch of samples), to obtain information about each sample (e.g., from a bar code associated with the sample), and to place an aliquot of the sample into a multiwell plate while keeping track of the location of the aliquot within the multiwell (e.g., a 96 well) plate. The software can instruct the sample transfer system to compile the information (e.g., identity of the sample and the location of the sample in the multiwell plate) into a file, which can then be transmitted to the central controller and/or other modules, e.g., the PCR preparation system.

An example of software that can be used, for example, with sample transfer system 10 is attached hereto as Appendix 1 and is described in detail below.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Systems and methods for analyzing nucleic acid sequences patent application.
###
monitor keywords

Browse recent University Of Massachusetts patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Systems and methods for analyzing nucleic acid sequences or other areas of interest.
###


Previous Patent Application:
Synthetic antigens for the detection of antibodies to hepatitis c virus
Next Patent Application:
Chemically-enhanced primer compositions, methods and kits
Industry Class:
Chemistry: molecular biology and microbiology
Thank you for viewing the Systems and methods for analyzing nucleic acid sequences patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 1.14934 seconds


Other interesting Freshpatents.com categories:
Amazon , Microsoft , IBM , Boeing Facebook

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2--0.7178
Key IP Translations - Patent Translations

     SHARE
  
           

stats Patent Info
Application #
US 20120270206 A1
Publish Date
10/25/2012
Document #
13337740
File Date
12/27/2011
USPTO Class
435/5
Other USPTO Classes
4352872, 435/612, 435/615
International Class
/
Drawings
51


Your Message Here(14K)



Follow us on Twitter
twitter icon@FreshPatents

University Of Massachusetts

Browse recent University Of Massachusetts patents

Chemistry: Molecular Biology And Microbiology   Measuring Or Testing Process Involving Enzymes Or Micro-organisms; Composition Or Test Strip Therefore; Processes Of Forming Such Composition Or Test Strip   Involving Virus Or Bacteriophage