FreshPatents.com Logo
stats FreshPatents Stats
1 views for this patent on FreshPatents.com
2012: 1 views
Updated: October 13 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Pre-transplant accommodated organs resistant to anti-donor immunity

last patentdownload pdfdownload imgimage previewnext patent


20120270202 patent thumbnailZoom

Pre-transplant accommodated organs resistant to anti-donor immunity


This invention includes the composition of organ grafts accommodated prior to transplantation and therefore resistant to rejection by preformed antibodies. Accommodation is achieved within the donor animal by administration of sub-lethal levels of accommodation inducing factors derived from animals sensitized to the donor.

Browse recent The Board Of Regents Of The University Of Nebraska patents - Omaha, NE, US
Inventors: William E. Beschorner, Susan Beschomer
USPTO Applicaton #: #20120270202 - Class: 435 11 (USPTO) - 10/25/12 - Class 435 
Chemistry: Molecular Biology And Microbiology > Differentiated Tissue Or Organ Other Than Blood, Per Se, Or Differentiated Tissue Or Organ Maintaining; Composition Therefor

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120270202, Pre-transplant accommodated organs resistant to anti-donor immunity.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

This application a continuation of Ser. No. 12/897,297, filed Oct. 4, 2010, pending, which is a continuation of Ser. No. 10/181,896 filed Nov. 7, 2002, which issued Oct. 5, 2010 as U.S. Pat. No. 7,807,463, which is a national phase of PCT/US01/02342, filed Jan. 25, 2001, which claims priority to U.S. Provisional Application No. 60/178,347, now expired, filed Jan. 25, 2000. Each of these applications is incorporated herein by reference in its entirety.

This invention was made with government support under Research Grant No.R43 DK50737 awarded by the U.S. government. The government has certain rights in the invention.

BACKGROUND OF THE INVENTION

I. Field of the Invention

The field of the present invention relates to the transplantation of organs and tissues, and particularly to the conditioning of a xenograft organ while still in the donor to resist rejection antibodies in the graft recipient (accommodation). The invention also relates to methods for assessing accommodation within the donor animal.

II. Background

A major barrier to the transplantation of organs from one mammalian species to another is rejection of the xenografts. Much of the rejection is not related to tissue-specific antigens but results from the recipient being sensitized to the donor animal. For example, humans and Old World monkeys have circulating antibodies to the alpha galactosyl oligosaccharide expressed on tissues in other animals, including pigs. The antibodies bind to any transplanted pig xenograft, bind complement, and destroy the graft within an hour. This rapid reaction is referred to as hyper-acute rejection (HAR). The graft is rapidly destroyed by the binding of preformed natural antibodies to endothelial cells and fixation of the complement. Most of the preformed antibodies in humans and old world apes (>80%) are against Gal(alpha)1-3Gal epitopes (alphaGal).

Acute vascular xenograft rejection occurs at three to eight days post transplant. Induced and recurrent anti-donor antibodies bind to the endothelium, leading to endothelial activation, small vessel thrombosis, and recruitment of macrophages and NK cells. Acute xenograft rejection is also mediated by cellular rejection. In contrast to cellular allograft rejection, CD4+ cytotoxic lymphocytes contribute to the graft injury.

The current methods for prevention of HAR target the binding of antibody or the fixation of complement. Anti-donor antibodies or complement can be depleted from the blood of the recipient. Hyper-acute rejection was prevented in ABO mismatched cardiac allografts performed in baboons by infusion of soluble trisaccharides of the A and B antigen to neutralize the antibodies. Though the circulating antibodies persisted after discontinuing the oligosaccharides, some grafts showed prolonged survival. Cooper D. K., et al, Transplantation 56: 769-77 (1993). Transgenic pigs which express human complement inhibitors or with reduced expression of alphaGal have been created.

These technologies are useful on a short-term basis; however, they are not completely effective. Antibodies return rapidly after their removal and the procedure must be repeated frequently. Transgenic pigs are variable in the level of expression of the transgene. With both methodologies, episodes of HAR and acute vascular rejection are common. Efforts to suppress acute xenograft rejection using conventional chemotherapy have been only partially successful. In particular, the antibody response to pig xenografts has proved resistant to suppression.

To reliably achieve long-term survival of xenografts, immune tolerance or graft accommodation will be necessary. Immune tolerance involves programming the recipient\'s immune system to be specifically unresponsive to the graft. Accommodation refers to adaptation of the graft to be resistant to an existing immune response.

Partial immune tolerance to pig xenografts has been induced by ablating the recipient immune system and reconstituting it in the presence of porcine hematopoietic cells. Porcine hematopoietic cells are detectable a year later. This approach has three basic limitations. First, tolerance would not resolve the problem caused by pre-existing natural antibodies. Additional efforts, such as removal of pre-existing antibodies by immune adsorption would be required. Second, the recipient is subject to a prolonged period of immune deficiency, putting it at risk for opportunistic and zoonotic infections. Third, the tolerance would be to antigens expressed on the hematopoietic cells only. Tolerance would not be induced to the tissue-associated antigens. Pig heart and kidney xenografts were fulminantly rejected in baboons using this protocol.

The transplantation of pig thymi into immune ablated recipients enhances tolerance as the recipient pre-thymocytes mature in the porcine environment. Using this approach, porcine skin graft survival is markedly prolonged in mice and modestly prolonged in primates. The basic limitations described above with mixed chimerism would still be a problem.

Patent application No. PCT/US94/05844 teaches the induction of immune tolerance of recipient lymphocytes to xenografts by infusing lymphocytes into immune deficient donor animals. The tolerant cells are later harvested and transferred back to the recipient, conveying tolerance to the recipient. However, the preexisting immune response would limit the usefulness of that approach.

The mechanism of accommodation is unknown. It is not due to the depletion of antibodies or to replacement of donor endothelium with host endothelium within the graft. Immunohistochemistry of long term cardiac xenografts (hamster-to-rat) shows deposition of IgG, IgM, C3, and C6 on the endothelium, but minimal fibrin formation.

The possibility has been explored that accommodated endothelial cells have reduced expression of antigen. Though some reduction in antigens such as alpha gal was observed with accommodation, it was not thought to be sufficient to protect the graft. Parker W. et al., Am. J. Pathol. 152: 829-39 (1998).

It is known that accommodated grafts can be adoptively transplanted to a second recipient. The factors responsible for accommodation are present within the graft and do not require circulating regulatory cells or factors. Miyatake showed that if rejection of a hamster heart graft can be prevented in a rat recipient, the graft will also resist rejection when re-transplanted into a second recipient identical with the first recipient. T. Miyatake, N. Koyamada, W. W. Hancock, M. P. Soares, and F. H. Bach. Survival of accommodated cardiac xenografts upon re-transplantation into cyclosporine-treated recipients. Transplantation 65: 1563-1569, (1998). While the observation is of scientific value, it is not clinically useful. To apply this observation would require two identical subjects, such as human recipients, one who would host the donor organ until accommodation is achieved. The organ would then be procured and transplanted into the second subject. The very limited number of potential recipients with identical twins and the ethically unacceptable complications to the first recipient make this approach unfeasible.

Some success in achieving accommodation in cultured endothelial cells has been reported. Dorling A., et al., Xenotransplantation, 5: 84-92 (1998); and Dorling A., et al., Transplantation, 62: 1127-1136 (1996). Dorling et al. demonstrated that prolonged exposure in culture of porcine endothelial cells to normal human immunoglobulins produced endothelial cell changes suggestive of accommodation.

Apparent confirmation of these studies was provided by Shah et al., Fifth Congress of the International Xenotransplantation Association, Abstract 199 (1999). Minimal resistance to complement mediated cytotoxicity was achieved with 72 hours of culture. Better resistance was observed with 120 to 144 hours of incubation. On the other hand, others. were unable to confirm these studies using primary endothelial cell cultures. McKane W. et al. Fifth Congress of the International Xenotransplantation Association, Abstract 200 (1999). They suggested that the apparent resistance reported by others may be an artifact related to the use of immortalized endothelial cells, which constitutively express anti-apoptotic genes.

In vitro culture is unlikely to have significant clinical utility. Accommodated endothelial cells would not have significant utility by themselves. Furthermore, accommodation of cultured and transformed endothelial cells required a minimum of 72 hours and preferably 120 hours of culture. See Dorling et al. (1996), supra. If the observation were to be extended to ex vivo culture of whole organs maintained in culture, the organs would significantly deteriorate during this period.

Achieving accommodation within the recipient is very difficult, costly, and often ends in failure, with rejection of the graft.

Therefore, a need exists for a method of xenograft transplantation that avoids the high costs, the complications, and the high risk of failure associated with accommodation of the xenograft organ within the recipient after transplantation.

SUMMARY

OF THE INVENTION

An objective of the invention is to provide a tissue or a graft accommodated prior to transplantation of the tissue or graft.

A second objective of the invention is to provide a method for accommodation of the donor graft prior to transplantation.

Another objective of the invention is to provide a method for development of improved in-donor accommodation technology.

In accordance with one embodiment of the invention, a method to produce a tissue or organ accommodated in a donor mammal to resist rejection in a recipient mammal, is provided. The method comprises:

infusing a donor mammal at least one time with sub-lethal levels of at least one accommodation-inducing factor; allowing prolonged exposure to said accommodation inducing factor; and

harvesting one or more of the tissues or organs which are accommodated.

In accordance with a preferred embodiment, the accommodation-inducing factor is infused in a donor mammal which is in an immune deficient state. In accordance with another preferred embodiment, the accommodation-inducing factor is an antibody reactive with donor endothelium, such as pig endothelium, plasma cells, B lymphocytes, human B lymphocytes, conditionally immortalized B lymphocytes, anti-alphaGal antibody, a cell expressing an accommodation inducing factor such as an antibody, a hybridoma comprising a cell expressing an accommodation inducing factor, T cells reactive with cells in the graft tissue or organ, perforin, or Bandeiraea simplicifolia lectin. In accordance with another preferred embodiment, the method further comprises the step of: determining that accommodation of the tissue or organ has been achieved, prior to transplantation of said organ or tissue.

In accordance with another embodiment, a xenograft organ or tissue is provided. The xenograft organ or tissue is raised in a donor mammal treated with an accommodation inducing factor. In accordance with a preferred embodiment, the xenograft organ includes, but is not limited to a heart, a kidney, a liver, a lung, a pancreas, a heart-lung intestine, a spleen, or a thymus. The xenograft tissue includes but is not limited to bone, skin, hair, eye, neural tissue, smooth muscle, skeletal muscle, cardiac muscle, myocytes, pancreatic islets, hepatocytes, embryonic stem cells, progenitor cells, or hematopoietic cells. In accordance with another preferred embodiment, the treatment with an accommodation inducing factor occurred while the donor mammal was in an immune deficient state. In accordance with another preferred embodiment, the accommodation inducing factor is an antibody reactive with donor endothelium, an antibody reactive with pig endothelium, plasma cells, B lymphocytes, human B lymphocytes, conditionally immortalized B lymphocytes, anti-alphaGal antibody, a cell expressing an accommodation inducing factor, a hybridoma comprising a cell expressing an accommodation inducing factor, T cells reactive with cells in the graft tissue or organ, perforin, or Bandeiraea simplicifolia lectin.

In accordance with yet another embodiment, a method for developing accommodation factors is provided which comprises infusing a donor mammal at least one time with sub-lethal levels of at least one accommodation-inducing factor; administering a tissue or cells from a mammal other than the donor to the donor; allowing prolonged exposure to the accommodation-inducing factor; and harvesting the accommodated tissue or cells. In accordance with a preferred embodiment, the accommodation-inducing factor is from an individual who is the intended recipient of said harvested tissue or cell. In accordance with another preferred embodiment, the accommodation-inducing factor is infused in the donor mammal which is in an immune deficient state. In accordance with yet another preferred embodiment, the accommodation-inducing factor is an antibody reactive with donor endothelium, an antibody reactive with a cell or tissue from a mammal other than said donor which was administered to said donor, a cell expressing an antibody reactive with a cell or tissue from a mammal other than the donor which was administered to said donor, an antibody reactive with pig endothelium, plasma cells, B lymphocytes, human B lymphocytes, conditionally immortalized B lymphocytes, anti-alphaGal antibody, a cell expressing an accommodation inducing factor, a hybridoma comprising a cell expressing an accommodation inducing factor, T cell reactive to the tissue or organ, perforin, or Bandeiraea simplicifolia lectin. In accordance with still another preferred embodiment, the method comprises the additional step of determining that accommodation of said tissue or organ has been achieved, prior to harvesting of the tissue or cell.

In accordance with another embodiment, the xenograft tissue or cell is an osteoblast cell, an osteo clost cell, skin, a skin epithelial cell, a hair follicle cell, eye cell, neural cells, a skeletal muscle cell, a smooth muscle cell, a cardiac muscle cell, pancreatic islet, a hematocyte, a stem cell, a progenitor cell, or a hemapoietic cell.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows accommodation in chimeric pigs by a lymphocyte lysis assay. 72-5, 72-1, and 72-3 are chimeric pigs infused at pre-immune fetal stage with bone marrow. The control sample is lymphocytes from an un-infused pig. The lysis was evaluated by Trypan Blue—see Example 3 for detailed method—as a function of the concentration of sensitized sheep serum.

FIG. 2 shows accommodation of a chimeric pig (72-5) by a lymphocyte assay. The control is lymphocytes from an un-infused pig. The lysis was evaluated by Trypan Blue—see Example 3 for detailed method—as a function of the concentration of sensitized sheep serum. The sensitized sheep serum was isolated from a different sensitized sheep than the sheep in FIG. 1.

FIG. 3 shows protection of a chimeric pig heart from hyperacute rejection by human blood. The hearts of a control pig and chimeric pig (72-5) were perfused with sensitized human blood and the heart beat was monitored.

DETAILED DESCRIPTION

OF THE PREFERRED EMBODIMENT I. Overview

The invention provides a method for production of an accommodated organ or tissue suitable for transplantation and the accommodated organ. Accommodation is the process of conditioning an organ to resist injury in a sensitized recipient. It is also referred to as adaptation. The adaptation conveys resistance in the graft to cell death or apoptosis, procoagulation changes, and adhesion of leukocytes. In accordance with the invention, the accommodation is achieved by infusion of accommodation inducing factor into a donor, allowing the graft to be exposed to the accommodation inducing factor, and harvesting the graft, accommodated while in the donor for resistance to rejection in recipient.

An accommodation-inducing factor is any factor that causes accommodation within a donor of an xenograft organ or tissue. The factor can be an aliquot of plasma from a mammalian species other than the donor. Alternatively, the factor can be a ligand purified from plasma or expressed in an in vitro system. Preferably, the factor is an immune system component, for example a B lymphocyte or an antibody.

The accommodated organ or tissue is an organ or tissue which can resist rejection by a sensitized recipient. A sensitized recipient is any organism with preformed antibodies or memory T cells reactive with donor antigens, present in the graft-recipient prior to transplantation. Examples of sensitized organisms are humans and old world monkeys, sensitive to pig antigens. The sensitized recipient typically produces a hyper-acute and/or acute vascular xenograft immune response to donor tissue, generally. The response is mediated by performed antibodies and T cells present in the recipient organism prior to the introduction of the xenograft. The organ or tissue graft is harvested from a chimeric animal.

In accordance with the invention, a chimeric mammal or animal is any mammal wherein an infused transgenic accommodation-inducing factor resides. For example, a piglet who receives a infusion of cells from another mammal is a chimeric animal. In a preferred embodiment, a chimeric animal is a swine who received, during an immune deficient stage, an infusion of cells from another mammalian species, e.g., a human. The infusion occurs preferably when the donor is in an immune deficient state such as a pre-immune fetus.

Factors that induce accommodation include but are not limited to antibody reactive with donor tissue, antibody reactive with donor endothelium, antibody reactive with pig tissue or endothelium in the case where the donor is a pig or a member of the swine family, plasma cells, B lymphocytes, human B lymphocytes, conditionally immortalized B lymphocytes, anti-alphaGal antibody, a cell engineered to express an accommodation inducing factor, a hybridoma comprising a cell expressing an accommodation inducing factor, and Bandeiraea simplicifolia lectin. The factor can be a natural, isolated factor, or it can be a cell engineered to express a ligand or the purified engineered ligand.

The accommodation factors may be derived from a member of a species that would be a xenograft recipient, e.g., a human or another mammal. In a preferred embodiment, the accommodation inducing factors are isolated from an individual who will later become a recipient. The method of determining, isolating, and manipulating each of the accommodations inducing factors are well known to an artisan skilled in the art.

The invention also provides organ xenografts that are less susceptible to rejection by preformed and developing immune elements, particularly antibodies such as natural antibodies to alphaGal. These antibodies are present in most humans and Old World monkeys. The alphaGal antigen is expressed on endothelial cells and other cells or tissues from most other species, including pigs. Accommodation of a transplant organ can be achieved within the organ donor with prolonged exposure of the graft to at least one accommodation inducing factor. The mechanism of antibody accommodation is not well understood. Without commitment to any one mechanistic explanation of the phenomena, it is believed that endothelial and other cells exposed in the donor to accommodation factors express agents that provide protection against antibodies in the recipient, leading to resistance.

The invention also provides for transplant tissues from a species other than donor, made resistant to preformed or developing antibodies made against the tissue in a recipient. For example, human hematopoietic cells are placed into fetal pigs under conditions that expose them to sublethal concentrations of accommodation factors. These factors are produced by cells infused into the fetal pig or could be produced by the pig or gilt/sow. The hematopoietic cells, such as granulocytes would resist destruction in a human host with antibodies against the granulocytes.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Pre-transplant accommodated organs resistant to anti-donor immunity patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Pre-transplant accommodated organs resistant to anti-donor immunity or other areas of interest.
###


Previous Patent Application:
Indole and indazole derivatives having a cell-, tissue- and organ-preserving effect
Next Patent Application:
Magnetic sorting of mammalian sperm having damaged membranes
Industry Class:
Chemistry: molecular biology and microbiology
Thank you for viewing the Pre-transplant accommodated organs resistant to anti-donor immunity patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.7302 seconds


Other interesting Freshpatents.com categories:
Amazon , Microsoft , IBM , Boeing Facebook

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2435
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120270202 A1
Publish Date
10/25/2012
Document #
13274504
File Date
10/17/2011
USPTO Class
435/11
Other USPTO Classes
435325
International Class
/
Drawings
3



Follow us on Twitter
twitter icon@FreshPatents