Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next
Prev

System and method to apply topping materials to print products / Scodox Ltd.




Title: System and method to apply topping materials to print products.
Abstract: Disclosed are systems and methods, including a method that includes depositing a curable adhesive onto a first surface of a substrate in a pre-determined pattern, placing topping material onto the substrate with the deposited adhesive, and applying UV energy to the substrate including the deposited adhesive and the placed topping material to cause curing of the deposited adhesive. ...


Browse recent Scodox Ltd. patents


USPTO Applicaton #: #20120269983
Inventors: Eli Grinberg, Kobi Bar


The Patent Description & Claims data below is from USPTO Patent Application 20120269983, System and method to apply topping materials to print products.

CROSS-REFERENCE TO RELATED APPLICATION

The present application claims benefit and priority to U.S. Provisional Patent Application No. 61/282,136, filed Dec. 22, 2009, and entitled “METHOD OF APPLYING GLITTER TO A SUBSTRATE,” the content of which is hereby incorporated by reference in its entirety.

BACKGROUND

- Top of Page


The present disclosure is directed to producing print products (e.g., cards, printed literature, etc.), and more particularly to a system and method to apply topping materials, for example, glitter materials, to print products.

Glitter, metallic and glass powders that reflect light are widely used for decorative applications such as posters, birthday cards and the like. Conventionally, a self-drying, water based, plastic adhesive is silk screened or rolled onto a substrate, glitter powder is poured, and the substrate is then tipped and shaken and/or vacuumed to remove excess glitter. Such techniques tend to result in low resolution print products.

SUMMARY

- Top of Page


In some embodiments, the present disclosure is directed to providing a method for applying glitter to a substrate, including digitally printing an adhesive onto the substrate to form a pattern, pouring glitter over the substrate and adhering the glitter to the pattern, exposing glitter coated adhesive to pattern to UV light, and removing excess glitter.

Optionally, removal of excess glitter comprises at least one of the group consisting of vacuuming, tipping and tamping the substrate. Optionally, the procedures implemented may include pressing the glitter into the adhesive pattern layer using, for example, a roller or plate.

Optionally the procedures implemented may include applying an over-layer of polymer onto the glitter layer. Optionally, the glitter layer includes particles of adhesive. Typically the over-layer is applied by a technique selected from the group consisting of digital printing, lamination, silk screening, brushing and rolling. In some embodiments, the over layer is a thermoset that is cured by exposure to UV light.

In some embodiments, a decorated substrate comprising a layer of glitter applied to a substrate with a digitally printed UV curable adhesive is provided.

The systems and methods described herein are advantageous over conventional systems and methods for adding topping materials (e.g., glitter) to media in that by using, for example, the UV cured thermoset adhesives the glitter better adheres to the adhesive and/or substrate than with regular water based glues. Where a sealing layer is applied onto the glitter layer, the results are further improved.

Thus, in one aspect, a method is disclosed. The method includes depositing a curable adhesive onto a first surface of a substrate in a pre-determined pattern, placing topping material onto the substrate with the deposited adhesive, and applying UV energy to the substrate including the deposited adhesive and the placed topping material to cause curing of the deposited adhesive.

Embodiments of the method may include any of the features described in the present disclosure, including any of the following features.

The topping material may be a glitter material.

The method may further include removing excess topping material not adhered to the deposited adhesive by performing one or more of, for example, vacuuming the excess topping material, tipping the substrate in order to cause at least some loose non-adhered topping material be removed, and/or tamping the substrate.

The method may further include facilitating adhesion of the topping material to the deposited adhesive by performing one or more of, for example, a) placing topping material comprising melted powder with solid powder, b) applying a magnetic field under the substrate to cause metallic-based topping material to be subjected to a magnetic force directed towards the substrate, c) applying air pressure onto the first surface of the substrate including the deposited adhesive and the placed topping material, d) generating an electrostatic field under the substrate to cause metallic-based topping material to be subjected to a magnetic force directed towards the first surface of the substrate, e) pressing the placed topping material to the adhesive deposited on the substrate using one or more nipping rollers, and/or f) using and curing exothermal adhesives to cause the release of heat from the exothermal adhesive to melt the topping material.

The method may further include applying an over-layer of polymer onto a layer of the placed topping material. The over-layer may be applied by a technique selected from the group consisting of digital printing, lamination, silk screening, brushing and rolling. The over-layer may be a thermoset that is cured by exposure to the applied UV energy.

Depositing the adhesive may include digitally printing the curable adhesive using a digital inkjet.

The method may further include pre-curing the curable adhesive to initiate the curing process of the adhesive and manipulate a viscosity level of the curable adhesive.

The method may further include applying infrared energy to the substrate including the deposited adhesive and the placed topping material.

The curable adhesive may include one or more of, for example, a radical type adhesive and a cationic adhesive.

The method may further include removing contaminants prior to the placing of the topping material by performing one or more of, for example, vacuuming the contaminants, tipping the substrate in order to cause at least some of the contaminants to be removed, and/or tamping the substrate.

In another aspect, a system is disclosed. The system includes an adhesive depositing machine to deposit a curable adhesive onto a first surface of a substrate in a pre-determined pattern, a placement device to place topping material onto the substrate with the deposited adhesive, and a UV energy source to apply UV energy to the substrate including the deposited adhesive and the placed topping material to cause curing of the deposited adhesive.

Embodiments of the system may include any of the features described in the present disclosure, including any of the features described above in relation to the method and the features described below, including any one of the following features.

The system may further include one or more devices to facilitate adhesion of the topping material to the deposited adhesive by performing one or more of, for example, a) placing topping material comprising melted powder with solid powder, b) applying a magnetic field under the substrate to cause metallic-based topping material to be subjected to a magnetic force directed towards the substrate, c) applying air pressure onto the first surface of the substrate including the printed adhesive and the placed topping material, d) generating an electrostatic field under the substrate to cause metallic-based topping material to be subjected to a magnetic force directed towards the substrate, e) pressing the placed topping material to the adhesive deposited on the substrate using one or more nipping rollers, and/or f) using and curing exothermal adhesives to cause the release of heat from the exothermal adhesive to melt the topping material.

The UV energy source may includes one or more of, for example, a UV fluorescent lamp, a UV LED device, and a UV laser devices.

The system may further include a topping material removal unit to remove excess topping material not adhered to the deposited adhesive by performing one or more of, for example, a) vacuuming the excess topping material, b) tipping the substrate in order to cause at least some loose non-adhered topping material be removed, and/or c) tamping the substrate.

The system may further include another energy source to pre-cure the curable adhesive to initiate the curing process of the adhesive and manipulate a viscosity level of the curable adhesive.

The system may further include an infrared energy source to apply infrared energy to the substrate including the deposited adhesive and the placed topping material.

The adhesive depositing machine may include a digital inkjet to digitally print the curable adhesive.

The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Other features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

- Top of Page


These and other aspects will now be described in detail with reference to the following drawings.




← Previous       Next →
Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this System and method to apply topping materials to print products patent application.

###


Browse recent Scodox Ltd. patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like System and method to apply topping materials to print products or other areas of interest.
###


Previous Patent Application:
Method for electrochemical coating
Next Patent Application:
Electroconductive paste for electron beam curing and circuit board production method using same
Industry Class:
Coating processes
Thank you for viewing the System and method to apply topping materials to print products patent info.
- - -

Results in 0.10998 seconds


Other interesting Freshpatents.com categories:
Medical: Surgery Surgery(2) Surgery(3) Drug Drug(2) Prosthesis Dentistry  

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-1.3044

66.232.115.224
Browse patents:
Next
Prev

stats Patent Info
Application #
US 20120269983 A1
Publish Date
10/25/2012
Document #
File Date
12/31/1969
USPTO Class
Other USPTO Classes
International Class
/
Drawings
0




Follow us on Twitter
twitter icon@FreshPatents

Scodox Ltd.


Browse recent Scodox Ltd. patents



Coating Processes   Direct Application Of Electrical, Magnetic, Wave, Or Particulate Energy   Electrostatic Charge, Field, Or Force Utilized   Superposed Diverse Or Multilayer Similar Coatings Applied  

Browse patents:
Next
Prev
20121025|20120269983|system and method to apply topping materials to print products|Disclosed are systems and methods, including a method that includes depositing a curable adhesive onto a first surface of a substrate in a pre-determined pattern, placing topping material onto the substrate with the deposited adhesive, and applying UV energy to the substrate including the deposited adhesive and the placed topping |Scodox-Ltd
';