FreshPatents.com Logo
stats FreshPatents Stats
3 views for this patent on FreshPatents.com
2013: 2 views
2012: 1 views
Updated: July 21 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Network addressible loudspeaker and audio play

last patentdownload pdfdownload imgimage previewnext patent


20120269361 patent thumbnailZoom

Network addressible loudspeaker and audio play


Methods and systems for network addressable loudspeakers and audio play are presented. One or more network addressable loudspeakers are registered at a server. An end user selects a network addressable loudspeaker to output audio, and an audio file is streamed from an audio source to the selected network addressable loudspeaker.

Browse recent Plantronics, Inc. patents - Santa Cruz, CA, US
Inventors: Gunjan D. Bhow, John H. Hart
USPTO Applicaton #: #20120269361 - Class: 381 81 (USPTO) - 10/25/12 - Class 381 
Electrical Audio Signal Processing Systems And Devices > One-way Audio Signal Program Distribution >Multiple Channel >With Switching

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120269361, Network addressible loudspeaker and audio play.

last patentpdficondownload pdfimage previewnext patent

RELATED APPLICATIONS

This application is a divisional application of application Ser. No. 12/423,232, filed Apr. 14, 2009, entitled “Network Addressible Loudspeaker and Audio Play”. The full disclosure of this application is incorporated herein by reference.

BACKGROUND OF THE INVENTION

In recent years, end users of multimedia content including music or video have begun to utilize a variety of electronic devices to listen to listen to the audio and view the video content. Furthermore, the available format by which the multimedia content may be acquired and stored has increased. For example, in addition to storage on compact disks (CDs) or digital video disks (DVDs), audio and video content may also be stored in digital files in memory at various electronic devices. Such electronic devices may include, but are not limited to, web servers, desktop computers, laptop computers, and portable multimedia electronic devices such as smartphones and digital audio/video players.

In addition, delivery of multimedia content to end users via communication networks such as the Internet has increased in popularity. For example, end users may purchase and download digital music or video from commercial websites such as Apple iTunes. Multimedia content may also be streamed to the end user whereby the user may listen to or view the streamed audio/video on his device as the audio or video residing on a remote device is being streamed. For example, an end user may listen to music on his device streamed from an Internet radio station.

As the types of devices used to listen to, view, organize, and store multimedia content increases, and the delivery of multimedia content across communication networks increases, improved methods and systems for listening to multimedia content are needed.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements.

FIG. 1 illustrates a system for self registration of network addressable loudspeakers.

FIG. 2 illustrates a system for audio play.

FIG. 3 illustrates a network addressable loudspeaker in one example.

FIGS. 4A and 4B illustrate web pages where a user identifies a network addressable loudspeaker to add to his user profile.

FIG. 5 illustrates a web page where a user selects an audio source for audio play.

FIG. 6 illustrates a web page where a user selects a network addressable loudspeaker for audio play.

FIG. 7 illustrates the web page where a user identifies a temporary network addressable loudspeaker to add to his user profile as a guest user.

FIG. 8 illustrates a web page where a temporary network addressable loudspeaker has been added to a user profile.

FIG. 9 illustrates automatic selection of a network addressable loudspeaker from several network addressable loudspeakers based on proximity.

FIG. 10 is a flow diagram illustrating a self registration process for a network addressable loudspeaker.

FIG. 11 is a flow diagram illustrating a process for audio play including audio source selection and loudspeaker selection.

FIG. 12 is a flow diagram illustrating a process for proximity detection and switching for network addressable loudspeakers.

DESCRIPTION OF SPECIFIC EMBODIMENTS

Methods and apparatuses for loudspeakers, selection of loudspeakers, and audio play are disclosed. The following description is presented to enable any person skilled in the art to make and use the invention. Descriptions of specific embodiments and applications are provided only as examples and various modifications will be readily apparent to those skilled in the art. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Thus, the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed herein. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention.

In the prior art, end users of multimedia content using a portable device such as a smartphone, portable music player, or laptop computer are limited to using the loudspeakers on the portable device when listening to or viewing multimedia content. By tying the loudspeakers to either the source of the multimedia content or to the control device being used to access, select, and control playback of the multimedia content, the end user is limited to the quality of the loudspeakers at the control device, which may be of limited quality depending upon the control device.

In one example, a user-selectable network addressable loudspeaker is provided that is decoupled from either the audio source or the user control device. In a further example, a user-selectable network addressable loudspeaker is provided that is decoupled from both the audio source and the user control device. The network addressable loudspeaker, audio source, and user control device may be decoupled across the Internet. In one example described herein, a software and hardware system to play personalized audio sources from the Internet or home personal computer to any desired selected loudspeaker using a mobile phone or web browser enabled device. Although the singular term “loudspeaker” may be used herein, such reference also applies to multiple speakers, each of which may be outputting a channel of a multi-channel audio performance, for example a pair of stereo loudspeakers used to output the left and right channels of a stereo audio signal. Similarly, the term “stream” is used herein in a generic manner to denote the transmission of audio data for subsequent reproduction, and is not limited to continuous, “real time” transmission and reproduction of audio data.

The methods and systems described herein provide end users with an improved audio listening experience and listening flexibility. By providing decoupled, network addressable loudspeakers, end users are now able to listen to their cloud-centric music and other audio/video using the network addressable loudspeakers, which may be designed to be of higher quality or audiophile quality relative to the loudspeakers on their portable computer or other portable audio/visual device.

In one example, where decoupled from both the control device and audio source, the loudspeakers are self-contained units not containing unnecessary components such as a display, keyboard, or other similar user interface. As such, where an owner such as a hotel operator wishes to provide high quality loudspeakers in every room, the owner may provide the loudspeakers without the need to purchase additional components associated with a computer, control device, or audio source.

In one use scenario, when a newly purchased network addressable loudspeaker (also referred to herein simply as a “loudspeaker” or “speaker”) is first powered-on and connected to the Internet, a self-registration process is executed by the loudspeaker whereby the loudspeaker connects to a web server and transmits identification information. The owner or user of the loudspeaker logs onto a web application residing on the web server and adds the loudspeaker to his or her profile. A password and assign name may also be associated with the added loudspeaker.

During the audio play process, a user logs on to the web server and chooses which source of audio to play. After choosing the audio source, the user selects which loudspeaker to send the audio to. This may be accomplished, for example, using a browser on a PC, a dedicated PC or Mac application, a browser on a mobile phone, SMS message, or a dedicated application on a mobile phone. For loudspeakers on their profile or previously used speakers, a displayed list of selectable loudspeakers is already populated with the loudspeaker names. The web server also shows the “status” of each speaker, e.g., whether it is turned off, available, or busy playing other audio. Once the user selects the loudspeaker, the web server instructs the loudspeakers to connect to the audio source or to the web server and then the audio starts streaming to the selected loudspeakers.

For new loudspeakers which the user would like to use as a guest (such as in a hotel, at a friend\'s place, or a coffee shop), the guest user is provided the name of the speakers by the host or the facility, and the associated optional password. For example, a user staying at a particular hotel in room 3015 may select to use the speakers in the room, which could be named “HotelSF3015”. The speaker names may be globally unique to avoid conflicts, or could be only proximity-based to create a LAN-type setup where only local uniqueness is necessary. Alternatively, a subdomain type setup could facilitate this. During playback, a user can log into the web server service and change the selected output loudspeakers.

In order to prevent a user from playing audio on a loudspeaker the user is not authorized for or not in close proximity to, a variety of security techniques may be implemented. In one example, the speakers must be approved by the “owner” from the web server or a mobile application. To further control the permission, the owner can indicate the duration of any approval. In addition to password protection similar to that of a wireless LAN, proximity detection can provide another layer of policy control on this issue. Speakers can be selected for playback only upon verification of the same LAN gateway (i.e., speakers and the control device need to be in the same subnet). While this does not address a multi-tenant situation arising in a hotel or a pre-wired apartment building, it dramatically reduces the possibilities of conflict without sacrificing usability. In a further example, the speakers can utilize the Bluetooth ID of the control device to ensure proximity.

In one example, a system for audio play includes a server, a network addressable loudspeaker, an audio source storing one or more audio files, and a control device. The network addressable loudspeaker includes an audio output transducer, a network interface, a processor, and a computer readable memory storing instructions which when executed by the processor cause the network addressable loudspeaker to register with the server, receive an audio signal via the network interface, and output the audio signal through the audio output transducer. The control device is operable to communicate with the server and select the network addressable loudspeaker from a plurality of network addressable loudspeakers to receive a streaming audio file from the audio source.

In one example, a computer readable storage medium stores instructions that when executed by a computer cause the computer to perform a method for managing audio play. The method performed includes receiving a plurality of registrations from a plurality of network addressable loudspeakers, associating one or more selectable network addressable loudspeakers with a user profile, and associating one or more selectable audio sources with the user profile. The method further includes receiving a first user selection from a user associated with the user profile, the first user selection comprising a selected audio source, and receiving a second user selection from the user associated with the user profile, second user selection comprising a selected network addressable loudspeaker. The method further includes initiating streaming of an audio file from the selected audio source to the selected network addressable speaker.

In one example, a network addressable loudspeaker includes a network interface, an amplifier, an audio output transducer, a processor, and a computer readable memory. The computer readable memory stores instructions which when executed by the processor cause the network addressable loudspeaker to register with a remote server, receive an audio signal via the network interface, and output the audio signal through the audio output transducer. The network addressable loudspeaker further includes a housing enclosure. The housing enclosure includes an access port for the audio output transducer, wherein the amplifier, processor, and computer readable memory are disposed within the housing enclosure. Where the network interface is a wired interface, the housing enclosure also includes an access opening for the network interface.

FIG. 1 illustrates a system for self registration of network addressable loudspeakers. Referring to FIG. 1, a server 2 executing software capable of performing functions described herein is coupled to the Internet 30. Server 2 includes a personalized sound selection program 4 in communication with a database 6. The database 6 includes user profiles 8 and registered speakers 10. A loudspeaker 12 capable of connection to the Internet 30 via a communication link 19 includes a self registration application 14. A loudspeaker 16 capable of connection to the Internet 30 via a communication link 21 includes a self registration application 14. A loudspeaker 2Q capable of connection to the Internet 30 via a communication link 23 includes a self registration application 14. Although FIG. 1 only shows three loudspeakers in communication with server 2 via Internet 30, in operation any number of loudspeakers having self registration modules 14 may be in use. Communication links 19, 21, 23 may be either wired or wireless links to the Internet 30. In one example, a loudspeaker may include a unique electronic identifier. For example, as shown in FIG. 1, loudspeaker 12 includes an electronic identifier 24.

In operation, during the self registration process each loudspeaker 12, 16, 20 upon connection to the Internet 30 automatically sends identification information to server 2 to indicate its presence and availability. Loudspeakers 12, 16, and 20 access Internet 30 utilizing a LAN router. For example, a speaker may identify itself by sending an IP address or a unique electronic identifier such as a globally unique electronic serial number. In one example, the loudspeaker registers itself using its media access control (MAC) address. Registered speakers 10 in database 6 include all loudspeakers which have self registered with the server 2. Each registered loudspeaker 12, 16, 20 is an Internet addressable device following self registration. In one example, loudspeakers 12, 16, 20 are stand alone independent speakers without a keyboard or display user interface. Once registered, each loudspeaker may receive commands and other messages from server 2, operating as a client addressable over the Internet.

In further operation, following self registration, each loudspeaker is claimed by a loudspeaker owner for use by the owner and added to the owner\'s user profile in user profiles 8, as discussed in a further detail with reference to FIG. 4. The loudspeaker owner may also allow guest users access to such a claimed loudspeaker, as discussed in further detail below with reference to FIG. 7. During the audio play process, the user may select from any of the registered loudspeakers associated with his or her user profile.

FIG. 2 illustrates a system for audio play. The system includes at least one registered Internet addressable loudspeaker, at least one audio source storing one or more audio files, and at least one control device connectable to server 2. An audio source may be located at a variety of devices coupled to the Internet 30, and is any source addressable on the web in one example. Thus, the audio source may be remote from the user\'s current location and control device.

The control device is operable to communicate with the server and select the network addressable loudspeaker from a plurality of network addressable loudspeakers to receive a streaming audio file from the audio source. The control device may be any device executing an application capable of communication with server 2. For example, the control device may be a mobile phone, portable computer, or desktop PC executing a micro web browser or web browser.

In one sample configuration shown in FIG. 2, an audio source 32, a control device 44, and a network addressable loudspeaker 12 are decoupled from one another and distributed at different network addresses within a communications network. In a further sample configuration, a network addressable loudspeaker 12 is decoupled from an audio source 36 at a control device 42 at a different network address within a communications network.

Referring to FIG. 2, an audio source 32 is located at a personal computer 38. For example, personal computer 38 may be at a user\'s home or office. In one example, audio source 32 is the user\'s library of digital music files. An audio source 34 is located at a website 40. In one example, audio source 34 is an Internet radio station or web based music subscription service.

A control device in communication with server 2 via the Internet 30 is used during the audio play process, whereby the audio play process may include selecting an audio source and selecting a network addressable loudspeaker. In one example, a control device 42 connects to the Internet 30 and server 2 via a cellular network 54. For example, control device 42 may be a cellular telephone or smartphone. Control device 42 includes a micro web browser 47 for interaction with server 2. An audio source may also be located at a control device. For example, control device 42 includes an audio source 36.

In a further example, a control device 44, such as a notebook or desktop computer connects to the server 2 via the Internet 30. Control device 44 includes a web browser 50 for interaction with server 2. In FIG. 2, loudspeakers 12, 16, 20, 48, and 58 have been registered at server 2 and are available in registered speakers 10 as described above in reference to FIG. 1. Server 2 includes a personalized sound selection program 4 utilizing database 6.

In one example, a control device 46, loudspeaker 48, and loudspeaker 58 connect to Internet 30 via a local area network (LAN) 56, thereby having a matching LAN gateway and having the same public IP address, though control device 46, loudspeaker 48, and loudspeaker 58 have different local IP addresses.

In operation, during the audio play process a user logs onto his account on server 2 using the personalized sound selection program 4. The personalized sound selection program 4 accesses the user\'s profile from database 6 and displays a list of audio sources the user may select from and a list of registered loudspeakers the user may select from. Depending upon the audio source, such as if the audio source is at a remote home PC, the home PC must be powered on to be selected. In a further example the user need only select the desired registered loudspeaker.

Once the audio source and registered loudspeaker are selected, the personalized sound selection program 4 initiates streaming of the selected audio source to the selected registered loudspeaker upon user command. Streaming between the selected audio source and the selected registered loudspeaker may be performed in a peer-to-peer implementation. Playback control of audio from the audio, source is performed at the control device using an appropriate user interface.

Referring again to FIG. 2, in one example a website 40 includes an audio source 34. For example, website 40 is any website capable of streaming audio source 34 to a selected client device. In operation, upon selection of website 40 as the desired source by the user, server 2 interacts with website 40 and instructs website 40 to stream audio source 34 to the user selected network addressable loudspeaker 12, 16, 20, 48 or 58 rather than to the user control device or server 2.

In another example illustrated in FIG. 2, a personal computer 38 includes an audio source 32. Utilizing a control device 42, 44, or 46, a user may browse lists of audio files in audio source 32 and select a desired music for playback. The lists of audio files on audio source 32 are viewed at a web application operating on server 2, whereby the web application has been synchronized with personal computer 38 to contain the metadata of the audio files in audio source 32. In operation, upon receiving user playback commands from control device 42, 44, or 46, server 2 interacts with personal computer 38 to stream the selected audio file to the user selected network addressable loudspeaker 12, 16, 20, 48, or 58.

In a further example illustrated in FIG. 2, an audio source 36 is stored on control device 42. During the play process, upon selection of audio source 32 at a control device 42, the user may browse the audio files contained an audio source 32 using any suitable application residing either on control device 42 or server 2. In operation, upon receiving user playback commands from control device 42, server 2 interacts with control device 42 to stream the selected audio file to the user selected network addressable loudspeaker 12, 16, 20, 48, or 58.

The list of network addressable loudspeakers which the user may select from may also include registered loudspeakers for which the user has not previously claimed to his user account. For example, if the user is in a hotel room or at a friend\'s house, registered loudspeakers at those locations may also appear on the speaker list. These loudspeakers can be either private loudspeakers in a private residence, or public speakers in a public location or place of business. If the user selects one of these private or public speakers, he may be prompted to enter a password prior to use.

In a further example, the list of network addressable loudspeakers which the user may select from may be limited to only loudspeakers identified as having a matching LAN to the currently used control device. In this example, referring to FIG. 2, a user at control device 46 is limited to selecting either network addressable loudspeaker 48 or network addressable loudspeaker 58 within the same LAN 56. In this manner, a measure of proximity between the control device 46 and selectable loudspeakers is provided to assure appropriate speaker selection and use.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Network addressible loudspeaker and audio play patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Network addressible loudspeaker and audio play or other areas of interest.
###


Previous Patent Application:
Media distribution system
Next Patent Application:
Sharing public addressing system using personal communication devices in an ad-hoc network
Industry Class:
Electrical audio signal processing systems and devices
Thank you for viewing the Network addressible loudspeaker and audio play patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.66063 seconds


Other interesting Freshpatents.com categories:
Medical: Surgery Surgery(2) Surgery(3) Drug Drug(2) Prosthesis Dentistry  

###

All patent applications have been filed with the United States Patent Office (USPTO) and are published as made available for research, educational and public information purposes. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not affiliated with the authors/assignees, and is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application. FreshPatents.com Terms/Support
-g2--0.748
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120269361 A1
Publish Date
10/25/2012
Document #
13540489
File Date
07/02/2012
USPTO Class
381 81
Other USPTO Classes
International Class
04B3/00
Drawings
14



Follow us on Twitter
twitter icon@FreshPatents