FreshPatents.com Logo
stats FreshPatents Stats
1 views for this patent on FreshPatents.com
2012: 1 views
Updated: December 09 2014
newTOP 200 Companies filing patents this week


Advertise Here
Promote your product, service and ideas.

    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Your Message Here

Follow us on Twitter
twitter icon@FreshPatents

Optical recording medium having auxiliary information and reference clock

last patentdownload pdfdownload imgimage previewnext patent

20120269049 patent thumbnailZoom

Optical recording medium having auxiliary information and reference clock


An information recording medium is composed of a substrate having a microscopic pattern constituted by a continuous substrate of grooves formed with a groove portion and a land portion alternately, a recording layer, and a light transmitting layer. The microscopic pattern is formed with satisfying a relation of P≦λ/NA, wherein P is a pitch of the land portion or the groove portion, λ is a wavelength of reproducing light, and NA is a numerical aperture of an objective lens. The land portion is formed with wobbling so as to be parallel with each other for both sidewalls of the land portion. Auxiliary information and a reference clock is recorded alternately. Information is recorded in the recording layer corresponding to a land portion by either one change of reflectivity difference and refractive index difference in the recording layer.
Related Terms: Numerical Aperture

Browse recent Jvc Kenwood Corporation patents - Kanagawa-ku, JP
Inventors: Tetsuya Kondo, Kenji Oishi
USPTO Applicaton #: #20120269049 - Class: 369 3003 (USPTO) - 10/25/12 - Class 369 
Dynamic Information Storage Or Retrieval > Information Location Or Remote Operator Actuated Control >Selective Addressing Of Storage Medium (e.g., Programmed Access) >Of Optical Storage Medium



view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120269049, Optical recording medium having auxiliary information and reference clock.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of co-pending application Ser. No. 12/652,809, filed on Jan. 1, 2010 (allowed), which is a Continuation of application Ser. No. 11/969,503, filed on Jan. 4, 2008 (now U.S. Pat. No. 7,668,072), which is a Continuation of application Ser. No. 11/620,150, filed on Jan. 5, 2007 (now U.S. Pat. No. 7,336,595), which is a Continuation of application Ser. No. 10/419,149, filed on Apr. 21, 2003 (now U.S. Pat. No. 7,177,162), and for which priority is claimed under 35 U.S.C. §120; and this application claims priority of Application No. 2002-117555 filed in Japan on Apr. 19, 2002 under 35 U.S.C. §119; this application also claims priority of Application No. 2002-141286 filed in Japan on May 16, 2002 under 35 U.S.C. §119; this application also claims priority of Application No. 2002-160129 filed in Japan on May 31, 2002 under 35 U.S.C. §119; this application also claims priority of Application No. 2002-123612 filed in Japan on Apr. 25, 2002 under 35 U.S.C. §119; and this application claims priority of Application No. 2002-148781 filed in Japan on May 23, 2002 under 35 U.S.C. §119; the entire contents of all are hereby incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an information recording medium that is particularly used for recording information and a reproducing apparatus for reading out information recorded in the information recording medium with making the information recording medium move relatively, particularly, relates to an information recording medium for recording and/or reproducing information optically and a reproducing apparatus thereof.

2. Description of the Related Art

Until now, there existed a system used for reading out information from an information recording medium while the information recording medium is made relatively move. In order to reproduce the system, such a method as optical, magnetic or capacitance is utilized. A system for recording and/or reproducing information by the optical method has been most popular in daily life. In the case of a read-only type information recording medium in disciform, which is reproduced by a light beam having a wavelength of 650 nm, for example, such a medium in disciform as a DVD video disc pre-recorded with picture image information, a DVD-ROM disc that is pre-recorded with a program or like, a DVD audio disc, or an SACD (Super Audio CD) disc that is pre-recorded with musical information is popularly known.

In the case of a recording and reproducing type information recording medium, there existed a DVD RAM disc utilizing a phase change effect, an ASMO (Advanced Storage Magneto-Optical) disc and an iD (intelligent image disc) utilizing a magneto-optical effect.

On the other hand, in order to increase recording density, such a study as shortening a wavelength of laser beam so as to realize emission of violaceous light has been continued. A second harmonic oscillating element or a semiconductor light emitting element of gallium nitride system compound, which was invented recently, emits light having a wavelength λ in the neighborhood of 350 nm to 450 nm. Consequently, they are possible to be an important light emitting element, which increases recording density drastically.

Further, a design of objective lens complying with such a wavelength has been advanced. Particularly, an objective lens having an NA (numerical aperture) utilized for a DVD disc, that is, an NA of exceeding 0.6 and more than 0.7 is being developed.

As mentioned above, a reproducing apparatus for information recording medium that is equipped with a light emitting element of which wavelength λ is reduced down to 350 nm to 450 nm and equipped with an objective lens of which an NA is more than 0.7 is being developed. By using these technologies, it can be expected that an optical disc system, which surpasses recording capacity of current DVD disc further more, will be developed.

Further, it is also desired that an information recording medium having higher recording density, which is designed on the basis of a violaceous laser beam and a higher NA, is developed.

On the other hand, a recent recording and reproducing type disc adopts a microscopic configuration, namely the land-groove system. With referring to FIGS. 41 and 42, an information recording medium designed for a higher NA recording and reproducing system is explained.

FIG. 41 is a cross sectional view of a conventional information recording medium adopting the microscopic configuration that is called the land-groove system according to the prior art.

FIG. 42 is an enlarged plan view of the information recording medium shown in FIG. 41 showing the horizontal configuration of the information recording medium according to the prior art.

As shown in FIG. 41, an information recording medium 100 is composed of a recording layer 120 and a light transmitting layer 110 that are sequentially laminated on a substrate 130. A microscopic pattern 131 is formed on the substrate 130. The recording layer 120 is formed directly on the surface of the microscopic pattern 131. The microscopic pattern 131 is composed of a plural of land portions “La” and “Lb” (hereinafter generically referred to as land portion “L”) and a plural of groove portions “Ga” to “Gc” (hereinafter generically referred to as groove portion “G”). Macroscopically, the configuration corresponds to that the microscopic pattern 131 is constituted by a continuous groove composed of the land portion “L” and another continuous groove composed of the groove portion “G”.

Further, as shown in FIG. 42, a record mark “M” is formed in both the grooves composed of the land portion “L” and the groove portion “G” respectively when recording.

With paying attention to the dimensions of the microscopic pattern 131, while a shortest distance between the groove portions “Ga” and “Gb” is assumed to be a pitch “P0” (another shortest distance between the land portions “La” and “Lb” is also the pitch “P0”), the microscopic pattern 131 is formed so as to satisfy a relation of P0>S0, wherein “S0” is a spot diameter of reproducing light beam.

Hereupon, the spot diameter “S0” is calculated by a wavelength λ of laser beam for reproducing and an NA of objective lens such as S0=λ/NA. In other words, the pitch “P0” is designed so as to satisfy a relation of P0>λ/NA.

In the case of the information recording medium 100, a light beam for recording (recording light) is irradiated on the light transmitting layer 110 and a record mark “M” is formed on both the land portion “L” and the groove portion “G” of the recording layer 120.

Further, a light beam for reproducing (reproducing light) is irradiated on the substrate 130 or the light transmitting layer 110 and reflected by the recording layer 120, and then the reflected reproducing light is picked up for reproducing.

Inventors of the present invention have actually manufactured an information recording medium 100 as an experiment, and experimentally recorded and reproduced the information recording medium 100. The inventors founded a problem such that a cross erase phenomenon was extremely noticeable. The cross erase phenomenon is a phenomenon such that information is recorded with being superimposed on a signal previously recorded in a groove portion “G”, for example, when recording the information in a land portion “L”. In other words, it is such a phenomenon that information previously recorded in a groove portion “G” is erased by recording another information in a land portion “L”.

Further, this phenomenon can also be noticeable in a reverse case, that is, the cross erase phenomenon is also recognized if previously recorded information in a land portion “L” is observed when recording information in a groove portion “G”. If such a cross erase phenomenon occurs, as mentioned above, information recorded in an adjacent groove is damaged. In case of an information system having larger capacity, an amount of lost information becomes excessively large. Consequently, affection to a user is enormous.

Consequently, it is considered for such an information recording medium 100 that information shall be recorded only in either land portion “L” or groove portion “G”. However, there is existed a problem such that recording capacity of an information recording medium will decrease and a merit of the information recording medium having a potential of recording in higher density will decline if such an information recording method is conducted.

SUMMARY

OF THE INVENTION

Accordingly, in consideration of the above-mentioned problems of the prior art, an object of the present invention is to provide an information recording medium that is reduced in cross erase and can be recorded in higher density, and an reproducing apparatus for reproducing information recorded in the information recording medium with making the information recording medium move relatively.

In order to achieve the above object, the present invention provides, according to an aspect thereof, an information recording medium at least comprising: a substrate having a microscopic pattern constituted by a continuous substrate of grooves formed with a groove portion and a land portion alternately; a recording layer formed on the microscopic pattern for recording information; and a light transmitting layer formed on the recording layer, the information recording medium is further characterized in that the microscopic pattern is formed with satisfying a relation of P≦λ/NA, wherein P is a pitch of the land portion or the groove portion, λ is a wavelength of reproducing light for reproducing the recording layer, and NA is a numerical aperture of an objective lens, and that the land portion is formed with wobbling so as to be parallel with each other for both sidewalls of the land portion, and that an auxiliary information based on data used supplementally when recording the information and a reference clock based on a clock used for controlling a recording speed when recording the information is recorded alternately and continuously.

According to another aspect of the present invention, there provide a reproducing apparatus for reproducing a recording layer of an information recording medium comprising: a substrate having a microscopic pattern constituted by a continuous substrate of grooves formed with a groove portion and a land portion alternately; the recording layer formed on the microscopic pattern for recording information; and a light transmitting layer formed on the recording layer, the information recording medium is further characterized in that the microscopic pattern is formed with satisfying a relation of P≦λ/NA, wherein P is a pitch of the land portion or the groove portion, λ is a wavelength of reproducing light for reproducing the recording layer, and NA is a numerical aperture of an objective lens, and that the land portion is formed with wobbling so as to be parallel with each other for both sidewalls of the land portion, and that an auxiliary information based on data used supplementally when recording the information and a reference clock based on a clock used for controlling a recording speed when recording the information is recorded alternately and continuously, the reproducing apparatus comprising: a light emitting element for emitting reproducing light having a wavelength λ of 350 nm to 450 nm and a noise of less than RIN (Relative Intensity Noise) −125 dB/Hz; a reproducing means equipped with an objective lens having a numerical aperture NA of 0.75 to 0.9; and a control means for controlling the reproducing means to irradiate the reproducing light only on the land portion for reproducing.

Other object and further features of the present invention will be apparent from the following detailed description when read in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a cross sectional view of an information recording medium according to a first embodiment of the present invention.

FIG. 2 is an enlarged plan view of a microscopic pattern of the information recording medium shown in FIG. 1.

FIG. 3 is another enlarged plan view of a microscopic pattern of the information recording medium shown in FIG. 1 exhibiting a state of being recorded.

FIG. 4 is a cross sectional view of the information recording medium shown in FIG. 1 exhibiting a state of reproducing or recording a recording layer of the information recording medium.

FIG. 5 is an enlarged plan view showing an auxiliary information area and a reference clock area in the information recording medium according to the first embodiment, of the present invention.

FIG. 6 is an enlarged plan view of the information recording medium according to the first embodiment of the present invention when information is recorded in the information recording medium through the CLV (Constant Linear Velocity) recording method.

FIG. 7 is an enlarged plan view of the information recording medium according to the first embodiment of the present invention when information is recorded on the information recording medium through the CAV (Constant Angular Velocity) recording method.

FIG. 8 is an enlarged plan view of the information recording medium in disciform according to the first embodiment of the present invention when information is recorded in the information recording medium through the CLV recording method.

FIG. 9 is an enlarged plan view of the information recording medium in disciform according to the first embodiment of the present invention when information is recorded on the information recording medium through the CLV recording method and further the information is recorded on a land portion.

FIG. 10 is an enlarged plan view of a photo-detector mounted on an apparatus for reproducing an information recording medium according to the present invention showing a state of dividing the photo-detector into four.

FIG. 11 is a first example showing a distributed recording of auxiliary information.

FIG. 12 is a second example showing a distributed recording of auxiliary information.

FIG. 13 is a third example showing a distributed recording of auxiliary information.

FIG. 14 is a fourth example showing a distributed recording of auxiliary information.

FIG. 15 is a table exhibiting data change before and after modulating a base-band.

FIG. 16 is a table exhibiting an example of actual data change before and after modulating a base-band.

FIG. 17 shows a first example of an amplitude-shift keying modulation waveform according to the present invention.

FIG. 18 shows a second example of an amplitude-shift keying modulation waveform according to the present invention.

FIG. 19 shows a third example of an amplitude-shift keying modulation waveform according to the present invention.

FIG. 20 shows a first example of a frequency-shift keying modulation waveform according to the present invention.

FIG. 21 shows a second example of a frequency-shift keying modulation waveform according to the present invention.

FIG. 22 shows a third example of a frequency-shift keying modulation waveform according to the present invention.

FIG. 23 shows a first example of a phase-shift keying modulation waveform according to the present invention.

FIG. 24 shows a second example of a phase-shift keying modulation waveform according to the present invention.

FIG. 25 shows a third example of a phase-shift keying modulation waveform according to the present invention.

FIG. 26 shows a first example of a shape of the information recording medium according to the present invention.

FIG. 27 shows a second example of a shape of the information recording medium according to the present invention.

FIG. 28 shows a third example of a shape of the information recording medium according to the present invention.

FIG. 29 is a cross sectional view of an information recording medium according to a second embodiment of the present invention.

FIG. 30 is a cross sectional view of an information recording medium according to a third embodiment of the present invention.

FIG. 31 is a cross sectional view of an information recording medium according to a fourth embodiment four of the present invention.

FIG. 32 is a cross sectional view of an information recording medium according to a fifth embodiment of the present invention.

FIG. 33 is a block diagram of a first reproducing apparatus of an information recording medium according to an embodiment of the present invention.

FIG. 34 is a block diagram of a second reproducing apparatus of an information recording medium according to an embodiment of the present invention.

FIG. 35 is a flow chart showing a reproducing method of an information recording medium according to an embodiment of the present invention.

FIG. 36 is a block diagram of a recording apparatus of an information recording medium according to an embodiment of the present invention.

FIG. 37 is a flow chart showing a recording method of an information recording medium according to an embodiment of the present invention

FIG. 38 is a graph exhibiting a relation between reflectivity and error rate.

FIG. 39 is a chart exhibiting reflectivity and reproduction characteristics of embodiments 1 through 7 and comparative examples 1 and 2.

FIG. 40 is a graph exhibiting a relation between modulated amplitude and error rate.

FIG. 41 is a cross sectional view of a conventional information recording medium according to the prior art.

FIG. 42 is an enlarged plan view of the information recording medium shown in FIG. 41.

DETAILED DESCRIPTION

OF THE PREFERRED EMBODIMENTS First Embodiment

With referring to FIG. 1, a basic configuration of an information recording medium according to the present invention will be explained. An information recording medium according to a first embodiment of the present invention is such an information recording medium that at least one of recording and reproducing is conducted through an optical method. Actually, it is such an information recording medium as a phase change recording type information recording medium, a dye type information recording medium, a magneto-optical type information recording medium or a light assist magnetic type information recording medium.

FIG. 1 is a cross sectional view of an information recording medium according to a first embodiment of the present invention. In FIG. 1, an information recording medium 1 according to the present invention is at least composed of a light transmitting layer 11, a recording layer 12, and a substrate 13 formed with a microscopic pattern 20. They are formed sequentially on the substrate 13. Unevenness of the microscopic pattern 20 forms a shape of continuous substance of approximately parallel grooves, wherein a symbol sign 21 is a microscopic pattern that is recorded with a record mark “M” as shown in FIG. 3.

Further, a shape of the information recording medium 1 can be applicable in any shape such as disciform, card and tape even in circular, rectangular or oval shape. The information recording medium 1 can also be acceptable although it is perforated.

Furthermore, a light beam for reproducing (reproducing light) or recording (recording light) is irradiated on the light transmitting layer 11.

The substrate 13, the recording layer 12, and the light transmitting layer 11 are detailed first. The substrate 13 is a base substance having a function of sustaining mechanically the recording layer 12 and the light transmitting layer 11 sequentially laminated thereon. With respect to a material for the substrate 13, any of synthetic resin, ceramic and metal is used. A typical example of synthetic resin is various kinds of thermoplastic resins and thermosetting resins such as polycarbonate, polymethyle methacrylate, polystyrene, copolymer of polycarbonate and polystyrene, polyvinyl chloride, alicyclic polyolefin and polymethyle pentene, and various kinds of energy ray curable resins such as UV ray curable resins, visible radiation curable resins and electron beam curable resins. They can be preferably used.

Further, it is also acceptable that these synthetic resins are mixed with metal powder or ceramic powder.

With respect to a typical example of the ceramic, soda lime glass, soda aluminosilicate glass, borosilicate glass or silica glass can be used. With respect to a typical example of the metal, a metal plate such as aluminum having no transparency can be used. A thickness of the substrate 13 is suitable to be within a range of 0.3 mm to 3 mm, desirably 0.5 mm to 2 mm due to necessity of supporting mechanically the information recording medium 1 totally. In case that the information recording medium 1 is in disciform, the thickness of the substrate 13 is desirable to be designed such that the total thickness of the information recording medium 1 including the substrate 13, the recording layer 12, and the light transmitting layer 11 becomes 1.2 mm, for the purpose of interchangeability with a conventional optical disc.

The recording layer 12 is a thin film layer that has a function of reading out information, recording or rewriting information. The recording layer 12 is formed with the microscopic pattern 20 that is constituted by a plurality of land portions “L1” through “L4” (hereinafter generically referred to as land portion “L”) and a plurality of groove portions “G1” through “G5” (hereinafter generically referred to as groove portion “G”) respectively. Information is recorded on either one of a land portion “L” and a groove portion “G” as a record mark “M”. With respect to a material for the recording layer 12, a material that is represented by a phase-change material of which reflectivity or refractive index changes in a process of before and after recording or both of reflectivity and refractive index change in a process of before and after recording, a dye material of which refractive index or a depth changes in a process of before and after recording or both of refractive index and depth change in a process of before and after recording, or a material represented by a magneto-optical material, which produces a change of Kerr rotation angle in a process of before and after recording, can be used.

With respect to an actual example of phase change material, alloys composed of an element such as indium (In), antimony (Sb), tellurium (Te), selenium (Se), germanium (Ge), bismuth (Bi), vanadium (V), gallium (Ga), platinum (Pt), gold (Au), silver (Ag), copper (Cu), aluminum (Al), silicon (Si), palladium (Pd), tin (Sn) and arsenic (As) are used, wherein an alloy includes a compound such as oxide, nitride, carbide, sulfide and fluoride. Particularly, alloys composed of a system such as Ge—Sb—Te system, Ag—In—Te—Sb system, Cu—Al—Sb—Te system and Ag—Al—Sb—Te system are suitable for the recording layers 12. These alloys can contain one or more elements as a micro additive element within a range of more than 0.01 atomic % to less than 10 atomic % in total. Such a micro additive element is selected out of Cu, Ba, Co, Cr, Ni, Pt, Si, Sr, Au, Cd, Li, Mo, Mn, Zn, Fe, Pb, Na, Cs, Ga, Pd, Bi, Sn, Ti, V, Ge, Se, S, As, Tl and In.

With respect to compositions of each element, for example, there is existed Ge2Sb2Te5, Ge1Sb2Te4, Ge8Sb69Te23, Ge8Sb74Te18, Ge5Sb71Te24, Ge5Sb76Te19, Ge10Sb68Te22 and Ge10Sb72Te18 as for the Ge—Sb—Te system and a system adding a metal such as Sn and In to the Ge—Sb—Te system as for the Ge—Sb—Te system.

Further, as for the Ag—In—Sb—Te system, there is existed Ag4In4Sb66Te26, Ag4In4Sb64Te28, Ag2In6Sb64Te28, Ag3In6Sb66Te28, Ag2In6Sb66Te26, and a system adding a metal or semiconductor such as Cu, Fe and Ge to the Ag—In—Sb—Te system.

With respect to an actual example of magneto-optical material, alloys composed of an element such as terbium, cobalt, iron, gadolinium, chromium, neodymium, dysprosium, bismuth, palladium, samarium, holmium, praseodymium, manganese, titanium, erbium, ytterbium, lutetium and tin can be used, wherein an alloy includes a compound such as oxide, nitride, carbide, sulfide and fluoride. Particularly, constituting an alloy of a transition metal, which is represented by TbFeCo, GdFeCo and DyFeCo, with rare earth element is preferable. Further, the recording layer 12 can be constituted by using an alternate lamination layer of cobalt and platinum.

With respect to an actual example of dye material, cyanine dye, phthalocyanine dye, naphthalocyanine dye, azo dye, naphthoquinone dye, fulgide dye, polymethine dye, acridine dye, and porphyrin dye can be used.

With respect to a method of forming the recording layers 12, a film forming method such as a vapor phase film forming method and a liquid phase film forming method can be used. As a typical example of the vapor phase film forming method, such methods as vacuum deposition of resister heating type or electron beam type, direct current sputtering, high frequency sputtering, reactive sputtering, ion beam sputtering, ion plating and chemical vapor deposition (CVD) can be used.

Further, with respect to a typical example of the liquid phase film forming method, there is existed a spin coating method and a dipping and drawing up method.

The light transmitting layer 10 is composed of a material having function of conducting converged reproducing light to the recording layer 12 while keeping the converged reproducing light in less optical distortion. A material having transmittance of more than 70%, for example, at a reproduction wavelength λ, desirably more than 80% can be suitably used for the light transmitting layer 11.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Optical recording medium having auxiliary information and reference clock patent application.
###
monitor keywords

Browse recent Jvc Kenwood Corporation patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Optical recording medium having auxiliary information and reference clock or other areas of interest.
###


Previous Patent Application:
Method of manufacturing heat-assisted magnetic recording head with internal mirror
Next Patent Application:
Polymer compound, composition for alignment film, alignment film, optical element, and optical information writing/reading device
Industry Class:
Dynamic information storage or retrieval
Thank you for viewing the Optical recording medium having auxiliary information and reference clock patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 1.03566 seconds


Other interesting Freshpatents.com categories:
Medical: Surgery Surgery(2) Surgery(3) Drug Drug(2) Prosthesis Dentistry  

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.254
Key IP Translations - Patent Translations

     SHARE
  
           

stats Patent Info
Application #
US 20120269049 A1
Publish Date
10/25/2012
Document #
13459735
File Date
04/30/2012
USPTO Class
369 3003
Other USPTO Classes
3692753, G9B/7029, G9B/7139
International Class
/
Drawings
28


Your Message Here(14K)


Numerical Aperture


Follow us on Twitter
twitter icon@FreshPatents

Jvc Kenwood Corporation

Browse recent Jvc Kenwood Corporation patents

Dynamic Information Storage Or Retrieval   Information Location Or Remote Operator Actuated Control   Selective Addressing Of Storage Medium (e.g., Programmed Access)   Of Optical Storage Medium