FreshPatents.com Logo
stats FreshPatents Stats
1 views for this patent on FreshPatents.com
2012: 1 views
Updated: April 14 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Inflatable intraluminal graft

last patentdownload pdfdownload imgimage previewnext patent


20120265290 patent thumbnailZoom

Inflatable intraluminal graft


A collapsible stent graft for aortic aneurysms includes a collapsible inner tubular member (26) and an outer layer (24) fused or adhered thereto such as to provide a spiral inflatable member (22) therebetween. The stent graft is inserted into an artery in the collapsed state and then expanded into position by introducing a liquid into the inflatable member and sealing the member. The graft is held in place by an expandable stent (40).
Related Terms: Intraluminal

Browse recent Trivascular, Inc. patents - Santa Rosa, CA, US
Inventor: Clifford Rowan Murch
USPTO Applicaton #: #20120265290 - Class: 623 115 (USPTO) - 10/18/12 - Class 623 
Prosthesis (i.e., Artificial Body Members), Parts Thereof, Or Aids And Accessories Therefor > Arterial Prosthesis (i.e., Blood Vessel) >Stent Structure

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120265290, Inflatable intraluminal graft.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 10/168,053, filed Jun. 14, 2002, with is the U.S. National Stage of International Application No. PCT/GB2000/000732, filed Mar. 3, 2000, which claims the benefit of Great Britain Application No. 9904722.7, filed Mar. 3, 1999, the contents of which is incorporated by reference herein.

TECHNICAL FIELD

This invention relates to intraluminal grafts. More particularly, this invention relates to intraluminal grafts useful as a lining for blood vessels or other body conduits.

BACKGROUND

Previously, the treatment of abdominal aortic aneurysms has involved using surgical grafts wherein the grafts are sutured into place. Conventional vascular grafts have long been used in humans and animals.

The treatment of abdominal aortic aneurysms requires a major surgical procedure to open the abdomen, excise the aneurysm sac and replace the vessel with a graft, which is sutured into place under direct vision. Many materials have been used to form the graft. At the present time this remains the preferred method of treatment for almost all abdominal aortic aneurysms.

Surgical graft materials such as flexible tubes of woven or knitted polyethylene terephthalate or porous polytetrafluoroethylene (PTFE) have previously been used. Grafts of biological origin have also been used; examples of these being fixed human umbilical or bovine arteries.

In the last few years, attempts have been made to reduce the extent of the surgical procedure by introducing these conventional, surgical grafts through the femoral arteries, passing them proximally, through the iliac arteries into the aorta and fixing them in place using endovascular stents, rather than sutures. These surgical grafts are large calibre devices which, even in their non-deployed state, are as large or even exceed the diameter of the iliac arteries through which they must pass. As the iliac arteries are often narrowed by, for example, atheromatous disease, the arteries may be damaged during introduction of the device.

More recently, interventional radiologists have attempted to improve on this concept using non-surgical graft material, catheters and endovascular stents to locate suitable vascular grafts or conduits onto the aortic aneurysm sac, from percutaneous punctures in the femoral arteries, requiring minimal surgical intervention. These techniques have become known as minimally invasive therapy.

A driving force to the development of the devices proposed in the present application has been the reduction in the size of the device when being inserted and also the reliability of the devices.

Although intraluminal devices are well-known in the field for the repair of inner linings for blood vessels or other body conduits, these previous types of devices are constructed, for example, from a thin layer of PTFE wrapped around a housing which is capable of expansion. Examples of such housings include self-expanding or balloon expandable-type devices comprising a mesh-like structure.

Due to the mesh-like structures used in previously known stent grafts, there is a minimum diameter to which the device can be reduced on its full contraction. On average, the minimum to which these devices can be reduced is 7 mm (21 French gauge) in diameter. There is therefore a limitation of these types of devices, for example, for use in babies, small children and old people where any amount of abrasion on the inner lining of the blood vessel during insertion of the stent graft may cause rupture of the vessel. It can also prove troublesome to expand these devices once inserted into the body. These types of grafts may also suffer from kinking which can result in the blocking of the passageway.

It is an object of at least one aspect of the present invention to mitigate one or more of the aforementioned problems and disadvantages of the prior art.

It is therefore an object of the present invention to provide a kink resistant device capable of forming a lining for blood vessels or other body conduits.

SUMMARY

OF THE INVENTION

According to one aspect of the present invention, there is provided a collapsible stent graft which comprises a collapsible tubular member for lining a blood vessel and an inflatable member extending around the tubular member and attached thereto whereby inflation of the inflatable member expands the tubular member from a collapsed state to an expanded state wherein in use it lines the blood vessel.

By collapsible herein is meant that the stent graft is capable of collapsing into a structure with a smaller cross-sectional area.

A stent graft is a structure capable of forming a lining in a body conduit which can be firmly secured within the conduit via a stenting procedure. The stent graft may or may not include an actual stent.

Preferably, the inflatable member is formed by partially fusing or adhering an outer layer to the collapsible tubular member so as to provide one or more inflatable members therebetween. Alternatively, a separate continuous inflatable member is fused or adhered onto the outer surface of the tubular member. The inflatable member preferably forms a spiral structure comprising a plurality of turns around the tubular member. The inflatable member is preferably 1-2 mm in cross-sectional diameter with a spacing of 1-2 mm between adjacent turns of the inflatable member measuring along the longitudinal length of the stent graft.

The inflatable member may also take a variety of other shapes such as a zig-zag or square-wave pattern around the tubular member.

There may be a plurality of inflatable members around the collapsible tubular member.

Preferably, a tube is attached to the proximal end of the inflatable member to allow inflation thereof. A further tube may also be attached to the distal end to allow preferential inflation thereof to locate the graft in the desired place. Any free ends of the inflatable channel are, of course, closed. The tube(s) may be removably attached by known means (one-way valve, screw etc.) to allow removal after use in such manner as to maintain the channel in the inflated state. Alternatively, one or both tubes could be integrally formed between the tubular member and outer layer.

A removable sheath may be provided around the stent graft to facilitate insertion into an artery and which is removed prior to expansion of the stent graft.

The material for inflating the inflatable member is preferably a low viscosity liquid so as to be easily injected, is radio-opaque to assist visualisation of the graft in vivo, able to set to form a gel-like substance, give flexibility to the graft, be non-toxic and adhere to the inner and outer walls of the inflatable member to help prevent a tear of the inner layer causing dissection. Dissection is where the lining of the stent graft becomes torn and separated from the blood vessel leading to occlusion of the blood vessel and restriction in the flow of blood therein.

Suitable materials for inflation may be, for example, silicone-based liquids, elastomeric materials, plastics materials, or a thermoplastic or thermosetting resin mixture which may be solidified after injection. A chemically cured resin, such as cyanoacrylate resin (“superglue”) may be used. A further suitable substance may, for example, be 2-hydroxyethyl methacrylate (HEMA). Silicone liquid satisfies some of the required criteria, but would not bond to the inner and outer surfaces of the inflatable member. However, this may not be a problem if polytetrafluoroethylene (PTFE) or other material sufficiently strong to resist tearing is used.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Inflatable intraluminal graft patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Inflatable intraluminal graft or other areas of interest.
###


Previous Patent Application:
Endoluminal device with kink-resistant regions
Next Patent Application:
Manufacture of fine-grained material for use in medical devices
Industry Class:
Prosthesis (i.e., artificial body members), parts thereof, or aids and accessories therefor
Thank you for viewing the Inflatable intraluminal graft patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.48779 seconds


Other interesting Freshpatents.com categories:
Tyco , Unilever , 3m -g2-0.2063
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120265290 A1
Publish Date
10/18/2012
Document #
13532887
File Date
06/26/2012
USPTO Class
623/115
Other USPTO Classes
International Class
61F2/82
Drawings
4


Intraluminal


Follow us on Twitter
twitter icon@FreshPatents