FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: October 13 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Enhanced stability implantable medical device

last patentdownload pdfdownload imgimage previewnext patent


20120265146 patent thumbnailZoom

Enhanced stability implantable medical device


An implantable medical device is provided which has a housing of an elongate form to minimize a size of an incision required for implantation. A stabilizing element is associated with the elongated form housing for the medical device. The stabilizing element transitions from a low profile initial form to a higher width final form to provide the medical device with a stabilized footprint after implantation. The stabilizing element is in the form of a rotating wing in one embodiment. In another embodiment, the stabilizing element is in the form of an expanding loop that can bend to extend out of side openings of a cavity within the housing, to provide such stabilization at the implantation site. The medical device can be in the form of a pacemaker, infusion pump, vascular access port or other subcutaneously implanted medical device.

Inventor: Bradley J. Glenn
USPTO Applicaton #: #20120265146 - Class: 604175 (USPTO) - 10/18/12 - Class 604 
Surgery > Means For Introducing Or Removing Material From Body For Therapeutic Purposes (e.g., Medicating, Irrigating, Aspirating, Etc.) >Treating Material Introduced Into Or Removed From Body Orifice, Or Inserted Or Removed Subcutaneously Other Than By Diffusing Through Skin >Material Introduced Or Removed Through Conduit, Holder, Or Implantable Reservoir Inserted In Body >Means For Securing Conduit To Body >Implanted Connecting Means

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120265146, Enhanced stability implantable medical device.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/287,398, filed on Oct. 8, 2008 and issued as U.S. Pat. No. 8,209,015 on Jun. 26, 2012, which claims benefit under Title 35, United States Code §119(e) of U.S. Provisional Application No. 60/960,640 filed on Oct. 9, 2007.

FIELD OF THE INVENTION

The following invention relates to medical devices which are implanted subcutaneously to provide a therapeutic benefit for a patient at the implantation site. More particularly, this invention relates to subcutaneously implanted medical devices which have a low profile form for minimally invasive implantation through a small incision, but which can be adjusted in form to have a highly stable configuration after implantation to resist movement after implantation. Such medical devices could be in the form of pacemakers, infusion devices, such as infusion pumps, vascular access ports, or other medical devices which are taught in the prior art to be implanted subcutaneously to provide a therapeutic benefit within a patient.

BACKGROUND OF THE INVENTION

A variety of medical conditions have been identified where implantation of a medical device is indicated. Such medical devices can include pacemakers, infusion pumps, vascular access ports, nerve stimulators, spinal stimulators, etc. Each of these medical devices generally include some form of housing which at least partially contains portions of the medical device apparatus to isolate this medical device apparatus from bodily fluids or bodily structures outside of the housing. Furthermore, typically some form of interface extends out of the housing to interact with surrounding bodily systems. For instance, in the case of a pacemaker electrodes extend from the housing as electrical leads which are coupled to nerves of the heart which, when receiving electrical stimulus from the pacemaker, cause the heart to beat. Infusion pumps include an outlet tube passing into a location where the preparation being infusion is to be delivered. For instance, if the infusion pump is infusing a pain medication, it would typically be implanted into a vascular structure, such as into a vein of the patient.

With such prior art medical devices, such implantation has required that the medical device be configured and positioned in a way that keeps the medical device stationary within the body. Such configuration has generally involved shaping the devices to be generally flat and either circular or square/rectangular in form (viewed from above). “Twiddlers Syndrome” refers to a situation where a subcutaneous medical device has been manipulated by the patient (or sometimes spontaneously) and flipped over upon itself one or more times, so that the device function is adversely affected. This can lead to fracture of output devices and potential failure of the medical device.

The shape of these medical devices requires that a relatively large incision be made to pass the medical device through the skin during surgical implantation of the medical device. As the size of the incision increases, the difficulty associated with hiding the incision from visual detection by others is increased. Generally, patients appreciate having small incisions when medical devices are to be implanted. With known prior art technology of the shape described above, such incisions have not been minimized. To some extent electronics and other components within a housing of the medical device can be miniaturized to minimize a size of the medical device and hence the required incision. However, such miniaturization has limits and other complications are associated with such miniaturization including enhanced cost and potentially reduced battery life, reduced storage capacity for medical preparations to be delivered and other potentially adverse effects. Accordingly, a need exists for a way to configure a medical device so that it can maintain fully beneficial operation while facilitating implantation through a reduced size incision. A solution to this problem would beneficially also be at least as resistant to “Twiddlers Syndrome” as prior art medical devices.

SUMMARY

OF THE INVENTION

With this invention an implantable medical device is provided which can be implanted through a relatively small incision and yet maintain full stability at the implantation site. The medical device includes a housing which has an elongate form. This elongate form is defined by a long axis extending between front and rear ends thereof and a lateral axis extending between lateral sides of the housing. The long axis is longer than the lateral axis, and typically at least about twice as long as the lateral axis.

Equipment within the housing for the medical device is configured as appropriate to fit within this elongate housing, rather than in prior art housings which are generally either circular in form or rectangular/square in form. With such an elongate form, it is only necessary that an incision be provided large enough to allow the passage of the lateral cross-section of the housing, perpendicular to the long axis, to pass through the incision. For instance, if the housing is two inches long, one-half inch wide and one-half inch high, an incision of one-half inch in length (or slightly greater) is sufficient to allow passage of the housing of the medical device therethrough.

Furthermore, a stabilizing element is associated with the housing. This stabilizing element has both an elongate narrow form and a deployed wide lateral form to enhance stability of the housing and hence the entire medical device at the implantation site. This stabilizing element can be in the form of one or more wings pivotably attached to the housing. These wings have an elongate form between ends thereof with these ends aligned with the long axis of the housing during implantation. After the housing and wing have arrived at the implantation site, the wing can be rotated so that the ends thereof extend laterally away from lateral sides of the housing to stabilize the medical device. Once so stabilized, the medical device has just as much (or more) stability at the implantation site as it would have if it was not provided with this particularly elongate form. Hence, a small incision has been facilitated without any adverse impact on functionality of the medical device.

In another form, this stabilizing element is in the form of a separate loop and the housing is provided with a cavity therein with a rear opening and at least one (and preferably two) lateral side opening. The loop is routed through the rear opening and then is caused to expand within the cavity to expand out the at least one side opening to provide enhanced stability to the medical device. The loop can be bent within the cavity to extend laterally out of the side openings to stabilize the housing. Alternatively, the loop can be formed of a resilient material which is initially restrained into an elongate form aligned with the long axis of the housing, but which springs to a natural original form after passing into the cavity where portions of the loop extend out the lateral side openings of the cavity, to stabilize the housing after the loop has been inserted entirely within the cavity.

OBJECTS OF THE INVENTION

Accordingly, a primary object of the present invention is to provide a medical device which can pass through a reduced size incision while maintaining stability at an implantation site subcutaneously within the body of a patient.

Another object of the present invention is to provide a medical device which can be implanted into a subcutaneous implantation site within the body of a patient.

Another object of the present invention is to provide a method for implanting a medical device and stabilizing the medical device once implanted.

Another object of the present invention is to provide a subcutaneous implantable medical device which has a small cross-section for implantation through a small incision which maintains high stability once implanted.

Another object of the present invention is to provide a medical device which can morph between a smaller profile implantation form and a larger profile static implanted form after being implanted at an implantation site.

Another object of the present invention is to provide a pacemaker which can be implanted through a small incision and still maintain stability once implanted.

Another object of the present invention is to provide a medical device which can be stabilized after implantation with the stabilization process easily and reliably performed by a medical professional.

Other further objects of the present invention will become apparent from a careful reading of the included drawing figures, the claims and detailed description of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a bottom plan view of an implantable medical device shown before rotation of a wing thereof to stabilize the medical device.

FIG. 2 is a bottom plan view similar to that which is shown in FIG. 1 but after rotation of the stabilizing element in the form of a wing to stabilize the medical device.

FIG. 3 is a bottom plan view of an implantable medical device having a cavity and a loop which can pass into the cavity and expand within the cavity to stabilize the housing.

FIG. 4 is an end elevation view of that which is shown in FIG. 3.

FIG. 5 is a side elevation view of that which is shown in FIG. 3.

FIG. 6 is a bottom plan view of that which is shown in FIG. 3 but with a stabilizing element in the form of a loop delivered through a cannula to utilize the stabilizing element in the form of a loop that is biased toward a deployed position but retrained in a narrow configuration before insertion into the cavity of the housing.

FIG. 7 is a bottom plan view similar to that which is shown in FIG. 6 but after positioning of the stabilizing element from the cannula into the cavity.

FIG. 8 is a bottom plan view of an alternative embodiment medical device and associated cannula with the medical device featuring a pair of rotating wings pivotably attached thereto and a spreader rod for use in spreading the pair of wings opposite each other for conversion of the medical device from an implantation form to a stabilized form.

FIG. 9 is a bottom plan view similar to that which is shown in FIG. 8 but after advancing the spreader rod and rotating the wings to the final stabilized configuration.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to the drawings, wherein like reference numerals represent like parts throughout the various drawing figures, reference numeral 10 (FIGS. 1 and 2) is directed to a pacemaker as one form of medical device illustrative of the enhanced stability implantable medical device of this invention. In addition to pacemakers 10, infusion pumps, ports and other medical devices could similarly be provided and utilize the same stabilization element and housing 20 as the pacemaker 10. The pacemaker 10 has an elongate form to allow it to be implanted through a small incision. A shape of the housing 20 of the pacemaker 10 is modified after arriving at the subcutaneous implantation site to enhance stability of the pacemaker 10 or other medical device implant. Two alternative embodiments are also disclosed herein including a first alternative pacemaker 110 (FIGS. 3-7) and a second alternative pacemaker 210 (FIGS. 8 and 9).

In essence, and with particular reference to FIGS. 1 and 2, basic details of the pacemaker 10 of the preferred embodiment are described. The pacemaker 10 includes at least a portion of medical device components thereof within a housing 20. The housing 20 is generally elongate in form aligned with a long axis. An axle 30 extends perpendicularly from this long axis and between sides of the housing 20. A wing 40 is pivotably attached to the housing 20, such as through the axle 30. The wing 40 can rotate between an initial position where it is aligned with the long axis of the housing 20 and a deployed form (arrow A), where it is rotated to enhance a width of the housing 20 and enhance a stability of the pacemaker 10. Electrical leads 50 are shown extending from the pacemaker 10 to output an appropriate electrical signal for heartbeat control. An outlet tube 60 is alternatively shown should the pacemaker 10 be replaced with some other medical device which delivers a fluid preparation into the body of the patient.

More specifically, and with continuing reference to FIGS. 1 and 2, specific details of the housing 20 are described according to this preferred embodiment. The housing 20 is an enclosure for at least portions of the pacemaker 10 or other medical device. Contents of the housing 20 can include a power supply, such as a battery, and appropriate control electronics for delivering an electrical signal to electrical leads 50 when specified to the heart of the patient. If an infusion pump type medical device is substituted, the housing 20 could contain a reservoir, pump elements, valves and other components typical of infusion pumps. This housing 20 is preferably substantially completely enclosed and preferably rigid in form.

The housing 20 generally includes a perimeter 22 including opposite ends 24 and opposite sides 26 extending between the ends 24. The housing 20 also includes a bottom 25 spaced from a top. The housing 20 in this preferred embodiment generally has a constant cross-section size between the bottom 25 and the top and preferably a thickness between the bottom 25 and the top that is similar to a width between the sides 26. The ends 24 and sides 26 are preferably substantially planar, but can be somewhat rounded if desired.

Importantly, the housing 20 exhibits an elongate form so that the ends 24 are spaced further from each other than a spacing between the sides 26 and a spacing between the bottom 25 and the top. Most preferably, this amount of elongation is such that a length of the housing 20 along a long axis between the ends 24 is at least about twice as great as a length of a lateral axis extending between the sides 26. The housing 20 can exhibit a greater degree of elongation with the length between the ends 24 more than twice as great as a width between the sides 26, or slightly less than this preferred amount and still benefit from the concept of this invention.

The pacemaker 10 is shown with an axle 30 extending down from the bottom 25 of the housing 20 perpendicular to the long axis and perpendicular to the lateral axis of the housing 20. While this axle 30 is not strictly required, it is beneficially provided to allow for pivotable attachment of the wing 40 to the bottom 25 of the housing 20. As an alternative to the separate axle 30, an axle-like structure can be formed into the housing 20 or the wing 40 to cooperate with a hole in the housing 20 or the wing 40. When the axle 30 is utilized, it fits within an appropriate cylindrical hole extending into the bottom 25 of the housing 20 and through the wing 40. This axle 30 is preferably cylindrical in form and has a length merely sufficient to extend a distance similar to a thickness of the wing 40.

With continuing reference to FIGS. 1 and 2, details of the wing 40 are described according to this preferred embodiment. The wing 40 is preferably a rigid structure pivotably attached to the housing 20 through the axle 30. This wing 40 preferably has a contour similar to that of the housing 20 so that the wing 40 also exhibits an elongate form. A hole 42 is provided for mounting the wing 40 to the axle 30. The wing 40 extends between opposing ends 44 with sides 46 extending between the ends 44. The sides 46 are opposite each other and define a width of the wing 40 with a length of the wing 40 defined by a distance between the ends 44. A thickness of the wing 40 is defined by a distance between a bottom 45 of the wing 40 and a top of the wing 40. The top of the wing 40 is located adjacent the bottom 25 of the housing 20.

Most preferably, the wing 40 has a perimeter size slightly less than the perimeter 22 of the housing 20. As an alternative, the wing 40 could be precisely the same perimeter size as the housing 20 or could be slightly larger than a perimeter 22 of the housing 20 and still function adequately according to this invention. Importantly, the wing 40 is preferably also elongate in form with a length about twice (or more) that of a width thereof.

The wing 40 is adapted to rotate relative to the housing 20 (along arrow A of FIGS. 1 and 2). This rotation allows the wing 40 to change from an implantation configuration to a deployed configuration for the housing 20, so that the housing 20 goes from having an elongate low profile form, such as while being passed through a small incision, to a large stable platform once implanted. This minimizes the possibility of “Twiddler\'s Syndrome” or other undesirable movement of the pacemaker 10 or other medical device once implanted.

Electrical leads 50 or outlet tubes 60 preferably extend from one of the ends 24 of the housing 20 or some other portion of the housing 20. To keep the wing 40 in its deployed position, it is conceivable that the bottom 25 of the housing 20 and the top of the wing 40 could be configured so that they include appropriate detent structures so that the wing 40 snaps into a final deployed position once rotated relative to the housing 20. Alternatively, holes can be formed in the housing 20 and the wing 40 which can receive sutures to tie the wing 40 in its open position relative to the housing 20.

Should the pacemaker 10 or other medical device require removal, the wing 40 can merely be rotated back to its implantation position by overcoming forces associated with the detents in the wing 40 and the housing 20, or by severing sutures to allow the wing 40 to freely rotate back to its implantation position with a long axis of the wing 40 aligned with a long axis of the housing 20. Whenever such implantation or removal occurs, a relatively small incision is required to pass through the skin and yet a stable medical device is still provided.

While the wing 40 is shown as a preferred form of stabilizing element, other forms of stabilizing elements could also be utilized including spring loaded stabilizing elements which automatically deploy after passing through the skin or reaching the incision site. Also, the wing 40 could be in the form of a pair of wings (FIGS. 8 and 9) or could be a structure having a form generally that of a “T” or “V” which either rotates relative to the housing 20 or is spring loaded to deploy arms to enhance a width of the medical device after complete implantation.

The wing 40 can be rotated after the medical device has reached the implantation site or immediately after passing through an incision in the skin. Such rotation can occur manually, such as through use of an appropriate probe or manipulation with the fingers. Most preferably, such rotation is achieved through use of a spring that biases the wing 40 to its deployed position extending laterally from the housing 20 long axis. Such a spring can be a torsion spring adjacent the axle 30 and contained within a recess in the wing 40 adjacent the axle 30, and/or a recess in the bottom of the housing 20 adjacent the axle 30. The spring could be formed of a biocompatible metal such as titanium (or alloys thereof) or made of a biocompatible plastic or other other non-metal material. The spring could also be a linear compression spring or other linear force applying spring located further from the axle 30 and interposed between the wing 40 and the housing 20. With such a spring, the wing 40 is both advanced to the deployed configuration and held in the deployed configuration after rotation. Further support in the deployed position can be provided by detents or suturing also.

With particular reference to FIGS. 3-7, details of the first alternative pacemaker 110 are described. The pacemaker 110 includes a housing 120 with a general elongate form similar to that of the housing 20. Thus, the housing 120 includes a front end 122 opposite a rear end 124 with sides 126 extending between the front end 122 and rear end 124. A thickness of the housing 120 is defined as a distance between the bottom 125 and top 128.

Uniquely, the housing 120 includes a cavity 130 therein. Preferably, this cavity 130 is closer to the bottom 125 than to the top 128 and has a planar form within a plane perpendicular to a vertical axis and aligned with both a long axis and a lateral axis for the housing 120. A long axis is defined as an axis extending from the front end 122 to the rear end 124 and the lateral axis is defined as an axis extending between the sides 126. The cavity 130 includes a roof 132 which is planar in form and spaced a constant distance away from a floor 134. An abutment wall 135 defines a wall extending from the roof 132 to the floor 134 on a side of the cavity 130 adjacent the front end 122 of the housing 120. The cavity 130 also includes side openings 136 extending out sides 126 of the housing 120 and a rear opening 138 extending out of the rear end 124 of the housing 120.

A loop 140 is provided as a preferred form of stabilizing element which can reside within the cavity 130 and extend laterally out of at least one of the side openings 136 and preferably both of the side openings 136 to stabilize the housing 120 after implantation. The loop 140 in this preferred form shown includes four legs 142 joined together by a front joint 146, side joints 144 and a rear joint 148. The front joint 146 is located adjacent the abutment wall 135. The rear joint 148 is adjacent the rear opening 134. The side joints 144 are adjacent the side openings 136. The loop 140 is sized so that the side joints 144 extend out of the side openings 136 and enhance an effective width and footprint of the housing 120 of the first alternative pacemaker 110. An interface port 150 extends from the housing 120 which can be in the form of electric leads or a fluid tube depending on the type of medical device provided, such as the pacemaker 110.

While a continuous loop 140 is shown, other stabilizing elements could be provided of similar form but not a complete loop. For instance, any one of the joints might be omitted so that adjacent legs 142 end at free ends, and such a modified loop would still function somewhat effectively.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Enhanced stability implantable medical device patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Enhanced stability implantable medical device or other areas of interest.
###


Previous Patent Application:
Soluble microneedle
Next Patent Application:
Stabilizing device having a locking collet
Industry Class:
Surgery
Thank you for viewing the Enhanced stability implantable medical device patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.53015 seconds


Other interesting Freshpatents.com categories:
Tyco , Unilever , 3m

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2--0.8057
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120265146 A1
Publish Date
10/18/2012
Document #
13532303
File Date
06/25/2012
USPTO Class
604175
Other USPTO Classes
International Class
61M25/04
Drawings
5



Follow us on Twitter
twitter icon@FreshPatents