stats FreshPatents Stats
n/a views for this patent on
Updated: April 14 2014
newTOP 200 Companies filing patents this week

    Free Services  

  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • View the last few months of your Keyword emails.

  • Patents sorted by company.


Follow us on Twitter
twitter icon@FreshPatents

Enhanced stability implantable medical device

last patentdownload pdfdownload imgimage previewnext patent

20120265146 patent thumbnailZoom

Enhanced stability implantable medical device

An implantable medical device is provided which has a housing of an elongate form to minimize a size of an incision required for implantation. A stabilizing element is associated with the elongated form housing for the medical device. The stabilizing element transitions from a low profile initial form to a higher width final form to provide the medical device with a stabilized footprint after implantation. The stabilizing element is in the form of a rotating wing in one embodiment. In another embodiment, the stabilizing element is in the form of an expanding loop that can bend to extend out of side openings of a cavity within the housing, to provide such stabilization at the implantation site. The medical device can be in the form of a pacemaker, infusion pump, vascular access port or other subcutaneously implanted medical device.

Inventor: Bradley J. Glenn
USPTO Applicaton #: #20120265146 - Class: 604175 (USPTO) - 10/18/12 - Class 604 
Surgery > Means For Introducing Or Removing Material From Body For Therapeutic Purposes (e.g., Medicating, Irrigating, Aspirating, Etc.) >Treating Material Introduced Into Or Removed From Body Orifice, Or Inserted Or Removed Subcutaneously Other Than By Diffusing Through Skin >Material Introduced Or Removed Through Conduit, Holder, Or Implantable Reservoir Inserted In Body >Means For Securing Conduit To Body >Implanted Connecting Means

view organizer monitor keywords

The Patent Description & Claims data below is from USPTO Patent Application 20120265146, Enhanced stability implantable medical device.

last patentpdficondownload pdfimage previewnext patent


This application is a continuation of U.S. patent application Ser. No. 12/287,398, filed on Oct. 8, 2008 and issued as U.S. Pat. No. 8,209,015 on Jun. 26, 2012, which claims benefit under Title 35, United States Code §119(e) of U.S. Provisional Application No. 60/960,640 filed on Oct. 9, 2007.


The following invention relates to medical devices which are implanted subcutaneously to provide a therapeutic benefit for a patient at the implantation site. More particularly, this invention relates to subcutaneously implanted medical devices which have a low profile form for minimally invasive implantation through a small incision, but which can be adjusted in form to have a highly stable configuration after implantation to resist movement after implantation. Such medical devices could be in the form of pacemakers, infusion devices, such as infusion pumps, vascular access ports, or other medical devices which are taught in the prior art to be implanted subcutaneously to provide a therapeutic benefit within a patient.


A variety of medical conditions have been identified where implantation of a medical device is indicated. Such medical devices can include pacemakers, infusion pumps, vascular access ports, nerve stimulators, spinal stimulators, etc. Each of these medical devices generally include some form of housing which at least partially contains portions of the medical device apparatus to isolate this medical device apparatus from bodily fluids or bodily structures outside of the housing. Furthermore, typically some form of interface extends out of the housing to interact with surrounding bodily systems. For instance, in the case of a pacemaker electrodes extend from the housing as electrical leads which are coupled to nerves of the heart which, when receiving electrical stimulus from the pacemaker, cause the heart to beat. Infusion pumps include an outlet tube passing into a location where the preparation being infusion is to be delivered. For instance, if the infusion pump is infusing a pain medication, it would typically be implanted into a vascular structure, such as into a vein of the patient.

With such prior art medical devices, such implantation has required that the medical device be configured and positioned in a way that keeps the medical device stationary within the body. Such configuration has generally involved shaping the devices to be generally flat and either circular or square/rectangular in form (viewed from above). “Twiddlers Syndrome” refers to a situation where a subcutaneous medical device has been manipulated by the patient (or sometimes spontaneously) and flipped over upon itself one or more times, so that the device function is adversely affected. This can lead to fracture of output devices and potential failure of the medical device.

The shape of these medical devices requires that a relatively large incision be made to pass the medical device through the skin during surgical implantation of the medical device. As the size of the incision increases, the difficulty associated with hiding the incision from visual detection by others is increased. Generally, patients appreciate having small incisions when medical devices are to be implanted. With known prior art technology of the shape described above, such incisions have not been minimized. To some extent electronics and other components within a housing of the medical device can be miniaturized to minimize a size of the medical device and hence the required incision. However, such miniaturization has limits and other complications are associated with such miniaturization including enhanced cost and potentially reduced battery life, reduced storage capacity for medical preparations to be delivered and other potentially adverse effects. Accordingly, a need exists for a way to configure a medical device so that it can maintain fully beneficial operation while facilitating implantation through a reduced size incision. A solution to this problem would beneficially also be at least as resistant to “Twiddlers Syndrome” as prior art medical devices.



With this invention an implantable medical device is provided which can be implanted through a relatively small incision and yet maintain full stability at the implantation site. The medical device includes a housing which has an elongate form. This elongate form is defined by a long axis extending between front and rear ends thereof and a lateral axis extending between lateral sides of the housing. The long axis is longer than the lateral axis, and typically at least about twice as long as the lateral axis.

Equipment within the housing for the medical device is configured as appropriate to fit within this elongate housing, rather than in prior art housings which are generally either circular in form or rectangular/square in form. With such an elongate form, it is only necessary that an incision be provided large enough to allow the passage of the lateral cross-section of the housing, perpendicular to the long axis, to pass through the incision. For instance, if the housing is two inches long, one-half inch wide and one-half inch high, an incision of one-half inch in length (or slightly greater) is sufficient to allow passage of the housing of the medical device therethrough.

Furthermore, a stabilizing element is associated with the housing. This stabilizing element has both an elongate narrow form and a deployed wide lateral form to enhance stability of the housing and hence the entire medical device at the implantation site. This stabilizing element can be in the form of one or more wings pivotably attached to the housing. These wings have an elongate form between ends thereof with these ends aligned with the long axis of the housing during implantation. After the housing and wing have arrived at the implantation site, the wing can be rotated so that the ends thereof extend laterally away from lateral sides of the housing to stabilize the medical device. Once so stabilized, the medical device has just as much (or more) stability at the implantation site as it would have if it was not provided with this particularly elongate form. Hence, a small incision has been facilitated without any adverse impact on functionality of the medical device.

In another form, this stabilizing element is in the form of a separate loop and the housing is provided with a cavity therein with a rear opening and at least one (and preferably two) lateral side opening. The loop is routed through the rear opening and then is caused to expand within the cavity to expand out the at least one side opening to provide enhanced stability to the medical device. The loop can be bent within the cavity to extend laterally out of the side openings to stabilize the housing. Alternatively, the loop can be formed of a resilient material which is initially restrained into an elongate form aligned with the long axis of the housing, but which springs to a natural original form after passing into the cavity where portions of the loop extend out the lateral side openings of the cavity, to stabilize the housing after the loop has been inserted entirely within the cavity.


Accordingly, a primary object of the present invention is to provide a medical device which can pass through a reduced size incision while maintaining stability at an implantation site subcutaneously within the body of a patient.

Another object of the present invention is to provide a medical device which can be implanted into a subcutaneous implantation site within the body of a patient.

Another object of the present invention is to provide a method for implanting a medical device and stabilizing the medical device once implanted.

Another object of the present invention is to provide a subcutaneous implantable medical device which has a small cross-section for implantation through a small incision which maintains high stability once implanted.

Another object of the present invention is to provide a medical device which can morph between a smaller profile implantation form and a larger profile static implanted form after being implanted at an implantation site.

Another object of the present invention is to provide a pacemaker which can be implanted through a small incision and still maintain stability once implanted.

Another object of the present invention is to provide a medical device which can be stabilized after implantation with the stabilization process easily and reliably performed by a medical professional.

Other further objects of the present invention will become apparent from a careful reading of the included drawing figures, the claims and detailed description of the invention.


Download full PDF for full patent description/claims.

Advertise on - Rates & Info

You can also Monitor Keywords and Search for tracking patents relating to this Enhanced stability implantable medical device patent application.
monitor keywords

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Enhanced stability implantable medical device or other areas of interest.

Previous Patent Application:
Soluble microneedle
Next Patent Application:
Stabilizing device having a locking collet
Industry Class:
Thank you for viewing the Enhanced stability implantable medical device patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.47201 seconds

Other interesting categories:
Tyco , Unilever , 3m -g2-0.1983

FreshNews promo

stats Patent Info
Application #
US 20120265146 A1
Publish Date
Document #
File Date
Other USPTO Classes
International Class

Follow us on Twitter
twitter icon@FreshPatents