FreshPatents.com Logo
stats FreshPatents Stats
1 views for this patent on FreshPatents.com
2013: 1 views
Updated: November 27 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

System and method for delivery of regional citrate anticoagulation to extracorporeal blood circuits

last patentdownload pdfdownload imgimage previewnext patent

20120265116 patent thumbnailZoom

System and method for delivery of regional citrate anticoagulation to extracorporeal blood circuits


The present invention includes a comprehensive replacement fluid system and method for the delivery of regional citrate anticoagulation (RCA) to extracorporeal blood circuits, wherein the system may include an online clearance monitor (OCM) and a circuit effluent online sensor system (OSS) for the continuous determination of patient plasma content of ultrafilterable solutes.
Related Terms: Citrate

Browse recent Henry Ford Health System patents - Detroit, MI, US
Inventors: Balazs Szamosfalvi, Stanley Frinak, Jerry Yee
USPTO Applicaton #: #20120265116 - Class: 604 607 (USPTO) - 10/18/12 - Class 604 
Surgery > Blood Drawn And Replaced Or Treated And Returned To Body >Constituent Removed From Blood And Remainder Returned To Body >Anticoagulant Added



view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120265116, System and method for delivery of regional citrate anticoagulation to extracorporeal blood circuits.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/280,450 filed Dec. 16, 2008, now U.S. Pat. No. 8,211,048, issued Jul. 3, 2012, which is the National Stage Entry of PCT/US2007/062589 filed Feb. 22, 2007, which, in turn, claims the benefit of U.S. provisional application Ser. No. 60/775,729 filed Feb. 22, 2006; U.S. provisional application Ser. No. 60/775,728 filed Feb. 22, 2006; U.S. provisional application Ser. No. 60/790,882 filed Apr. 11, 2006; U.S. provisional application Ser. No. 60/791,055 filed Apr. 11, 2006; and U.S. provisional application Ser. No. 60/845,646 filed Sep. 19, 2006, each of which is incorporated by reference herein.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to a system and method for the delivery of regional citrate anticoagulation (RCA) to extracorporeal blood circuits.

2. Background Art

Continuous renal replacement therapy (CRRT) is a form of extracorporeal blood treatment (EBT) that is performed in the intensive care unit (ICU) for patients with acute renal failure (ARF) or end-stage renal disease (ESRD), who are often hemodynamically unstable with multiple co-morbidities. In a specific form of CRRT, continuous veno-venous hemofiltration (CVVH) (FIG. 1), blood is pumped through a hemofilter and uremic toxin-laden plasma ultrafiltrate is discarded at a rate of 1-10 liters per hour (convective removal of solutes). An equal amount of sterile crystalloid solution (replacement fluid, CRRT fluid) with physiological electrolyte and base concentrations is simultaneously infused into the blood circuit either before the hemofilter (pre-dilution) or after the hemofilter (post-dilution) to avoid volume depletion and hemodynamic collapse. From a theoretical and physiological point of view, when run continuously for 24 hours per day, CVVH is the closest of all available renal replacement therapy (RRT) modalities today to replicating the function of the native kidneys. Most experts in the field believe that it should be the preferred treatment modality for unstable patients with renal failure. Nevertheless, 90% of RRT in the ICU is performed as intermittent hemodialysis (IHD), sustained low efficiency dialysis (SLED), or sometimes as continuous veno-venous hemo-diafiltration (CVVHDF). Common to all of these latter methods of RRT is that the removal of most solutes is predominantly by the process of diffusion from blood plasma through the membrane of the hemofilter into the dialysis fluid. Diffusion is less efficient in the removal of larger solutes than convection and therefore, from a theoretical standpoint, CVVH is a superior method of RRT.

The most important reason for the limited use of CVVH in the ICU is that anticoagulation is mandatory to prevent clotting of the extracorporeal circuit in 24-hour treatments. Systemic anticoagulation has an unacceptable rate of major bleeding complications and cannot be done safely. Similarly, extracorporeal blood treatments including plasmapheresis, plasma adsorption on specialized columns, blood banking procedures, lipid apheresis systems, plasma adsorption-based endotoxin removal, treatment with a bioartificial kidney device that contains live renal tubular cells, or with a liver replacement therapy circuit also require powerful regional anticoagulation. Regional citrate anticoagulation has emerged as a possible solution to the clinical problem of circuit clotting.

Citrate (or the quickly buffered citric acid) is present in the human plasma as the trivalent negative citrate anion. This ion chelates ionized calcium in the plasma resulting in a single negative Ca-citrate complex and in low free ionized calcium levels. Since the coagulation cascade requires free ionized calcium for optimal function, blood clotting in the extracorporeal blood circuit (EBC) can be completely prevented by an infusion of citrate into the arterial (incoming) limb of the EBC. When the blood is passed through the extracorporeal processing unit, the anticoagulant effect can be fully reversed by the local infusion of free ionized calcium into the venous (return) limb of the EBC. Therefore, theoretically, regional citrate anticoagulation can be both very powerful and fully reversible without systemic (intra-patient) bleeding tendencies.

Regional citrate anticoagulation has been performed for more than 20 years. Nevertheless, all currently described regional citrate anticoagulation methods are labor intensive and complex with the ICU nurse administering several potentially very dangerous IV infusions in the circuit and/or in central venous lines with frequent laboratory measurements and prescription adjustments. Physician errors in prescription and nursing errors in administration can quickly lead to major complications, and even to death. Due to its well-documented dangers, regional citrate anticoagulation has not gained wide use in clinical practice. The recognized dangers of RCA include hypernatremia; metabolic alkalosis; metabolic acidosis; hypocalcemia 1 (due to net calcium loss from the patient); hypocalcemia 2 (due to systemic citrate accumulation); rebound hypercalcemia (due to release of calcium from citrate after CVVH is stopped); hypophosphatemia; fluctuating levels of anticoagulation; nursing and physician errors; ionized hypomagnesemia; declining filter performance; trace metal depletion; access disconnection; wrong connection of citrate, calcium infusions, and/or of the blood circuit to the patient; and accidental disconnection of the citrate or calcium infusion.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a prior art system for continuous veno-venous hemofiltration (CVVH) or CVVH with dialysis (CVVHDF);

FIG. 2 illustrates a system according to the present invention for using citrate in the pre-dilution solution and infusion of a post-dilution solution to enhance removal of citrate in the hemofilter;

FIG. 3 illustrates use of a regional citrate anticoagulation (RCA) system according to the present invention to anticoagulate the extracorporeal circuit of applications other than CRRT;

FIGS. 4a-4b illustrate a continuous renal replacement therapy (CRRT) circuit based on pre- and post-dilution hemofiltration with an integrated online sensor system (OSS) and hematocrit sensors according to the present invention;

FIG. 5a illustrates a hemodialysis system which may be used for 24-hour sustained low efficiency dialysis (SLED) or 4-5 hour intermittent hemodialysis (IHD) with RCA according to the present invention;

FIG. 5b illustrates a conductivity-based online clearance monitor (OCM) according to the present invention for 24-hour SLED or IHD with online-generated dialysis fluid and automated RCA;

FIG. 6a illustrates a hemodialysis system which may be used for continuous veno-venous hemodialysis with pre-dilution hemofiltration (CVVHDF or c-SLEDF) with RCA according to the present invention;

FIG. 6b illustrates a conductivity-based OCM according to the present invention for pre-dilution CVVHDF with online-generated therapy fluid and automated RCA;

FIG. 7a illustrates a hemodialysis system which may be used for 4-5-hour post-dilution hemodiafiltration (intermittent post-HDF) with RCA according to the present invention;

FIG. 7b illustrates a conductivity-based OCM according to the present invention for post-dilution hemodiafiltration (HDF) with online-generated therapy fluid and automated RCA;

FIG. 8a illustrates a hemodialysis system which may be used for simultaneous pre- and post-dilution continuous veno-venous hemofiltration (CVVH) or 4-6 hour intermittent high volume hemofiltration (HVHF) with RCA according to the present invention;

FIG. 8b illustrates a conductivity-based OCM according to the present invention for pre- and post-dilution CVVH or HVHF with online-generated replacement fluid and automated RCA;

FIGS. 9a and 9b illustrate a triple lumen venous catheter with an infusion pathway according to the present invention;

FIGS. 10a and 10b illustrate a quadruple lumen catheter with an infusion pathway according to the present invention;

FIG. 10c illustrates a quadruple lumen vascular access catheter according to another aspect of the present invention with connection lines of different lengths and colors;

FIG. 10d illustrates a quadruple lumen vascular access catheter according to another aspect of the present invention with the male and female line connectors reversed and of different colors;

FIG. 11a illustrates connectors according to the present invention used to attach standard dialysis blood lines (independent arterial and venous blood circuit ends) for dialysis using separate arterial and venous needles;

FIG. 11b illustrates connectors according to the present invention used to attach a citrate-dedicated dialysis blood tubing (different arterial and venous blood circuit ends) for dialysis using separate arterial and venous needles;

FIG. 12a illustrates an arterial infusion line connector according to the present invention which may be used to attach a citrate-dedicated dialysis arterial blood line using separate arterial and venous needles;

FIG. 12b illustrates a venous infusion line connector according to the present invention which may be used to attach a standard or citrate-dedicated dialysis venous blood line using separate arterial and venous needles;

FIG. 13 illustrates citrate-dedicated blood circuit tubing with integrated arterial and venous medication infusion line connectors according to the present invention which may be used to connect the extracorporeal circuit to the patient using separate arterial and venous access needles or a double lumen hemodialysis catheter;

FIGS. 14a-14b illustrates a triple lumen vascular access catheter according to the present invention for use with single needle dialysis operational mode;

FIGS. 14c-14d illustrates a triple lumen vascular access catheter according to the present invention for use with single needle dialysis operational mode that accommodates citrate-dedicated blood tubing and medication infusion lines with different arterial and venous connectors;

FIG. 15a illustrates a connector according to the present invention for circuit priming and for attachment to a single vascular access needle from a dialysis blood line set and medication infusion lines for use with single needle dialysis operational mode;

FIG. 15b illustrates a connector according to the present invention for circuit priming and for attachment to a single vascular access needle from a dialysis blood line set for use with single needle dialysis operational mode;

FIGS. 15c and 15d illustrate a connector according to the present invention for circuit priming and for attachment to a single vascular access needle from a citrate-dedicated dialysis blood line for use with single needle dialysis operational mode;

FIG. 16a illustrates a connector according to the present invention for attachment to a single vascular access needle or to a single lumen catheter from a dialysis blood line for use with single needle dialysis operational mode;

FIG. 16b illustrates a connector according to the present invention for attachment to a single vascular access needle or to a single lumen catheter from a citrate-dedicated dialysis blood line for use with single needle dialysis operational mode;

FIG. 17a illustrates a hemodialysis system which may be used for 24-hour sustained low efficiency dialysis (SLED) or 4-5 hour intermittent hemodialysis (IHD) with RCA according to the present invention;

FIG. 17b illustrates a hemodialysis system which may be used for simultaneous pre- and post-dilution continuous veno-venous hemofiltration (CVVH) or 4-6 hour intermittent high volume hemofiltration (HVHF) with RCA according to the present invention;

FIG. 17c illustrates a hemodialysis system with sensors and online generation of fluid for continuous SLED with RCA according to the present invention;

FIG. 17d illustrates a hemodialysis system with sensors and online generation of fluid for pre-dilution CVVH with RCA according to the present invention;

FIG. 18 depicts a calculation according to the present invention of the maximum possible systemic citrate level during RCA;

FIG. 19 depicts a calculation according to the present invention of the conductivity of plasma (Cpin) in the arterial limb of the extracorporeal circuit entering the hemodialyzer;

FIG. 20a illustrates an OCM in accordance with the present invention;

FIG. 20b illustrates an OCM in accordance with another aspect of the present invention;

FIG. 21 depicts a comparison according to the present invention of the effects of permanent access recirculation on the fresh dialysis fluid conductivity bolus-based online dialysance measurement (Deffective) versus the circuit arterial limb blood conductivity bolus-based online dialysance measurement (DBolus);

FIG. 22 illustrates a basic hemofiltration circuit according to the present invention which may be used to extract a small amount of ultrafiltrate for chemical analysis;

FIG. 23 illustrates a complete hemofiltration circuit according to the present invention which may be used to extract a small amount of ultrafiltrate for chemical analysis;

FIG. 24 illustrates a hemofiltration circuit according to the present invention which may be used for priming and initial testing of pumps and pressure transducers;

FIG. 25 illustrates a complete hemofiltration circuit according to the present invention which may used to extract a small amount of ultrafiltrate for chemical analysis;

FIG. 26 illustrates a hemofiltration circuit according to the present invention showing the location of the triple lumen venous catheter with an infusion port at the tip of the withdrawal lumen;



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this System and method for delivery of regional citrate anticoagulation to extracorporeal blood circuits patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like System and method for delivery of regional citrate anticoagulation to extracorporeal blood circuits or other areas of interest.
###


Previous Patent Application:
Acoustic access disconnection systems and methods
Next Patent Application:
Device for removing fluid from blood in a patient
Industry Class:
Surgery
Thank you for viewing the System and method for delivery of regional citrate anticoagulation to extracorporeal blood circuits patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 1.56394 seconds


Other interesting Freshpatents.com categories:
Tyco , Unilever , 3m

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2--0.47
     SHARE
  
           

Key IP Translations - Patent Translations


stats Patent Info
Application #
US 20120265116 A1
Publish Date
10/18/2012
Document #
13528078
File Date
06/20/2012
USPTO Class
604/607
Other USPTO Classes
International Class
/
Drawings
59


Citrate


Follow us on Twitter
twitter icon@FreshPatents