FreshPatents.com Logo
stats FreshPatents Stats
1 views for this patent on FreshPatents.com
2013: 1 views
Updated: December 09 2014
newTOP 200 Companies filing patents this week


Advertise Here
Promote your product, service and ideas.

    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Your Message Here

Follow us on Twitter
twitter icon@FreshPatents

System and method for delivery of regional citrate anticoagulation to extracorporeal blood circuits

last patentdownload pdfdownload imgimage previewnext patent

20120265116 patent thumbnailZoom

System and method for delivery of regional citrate anticoagulation to extracorporeal blood circuits


The present invention includes a comprehensive replacement fluid system and method for the delivery of regional citrate anticoagulation (RCA) to extracorporeal blood circuits, wherein the system may include an online clearance monitor (OCM) and a circuit effluent online sensor system (OSS) for the continuous determination of patient plasma content of ultrafilterable solutes.
Related Terms: Citrate

Browse recent Henry Ford Health System patents - Detroit, MI, US
Inventors: Balazs Szamosfalvi, Stanley Frinak, Jerry Yee
USPTO Applicaton #: #20120265116 - Class: 604 607 (USPTO) - 10/18/12 - Class 604 
Surgery > Blood Drawn And Replaced Or Treated And Returned To Body >Constituent Removed From Blood And Remainder Returned To Body >Anticoagulant Added



view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120265116, System and method for delivery of regional citrate anticoagulation to extracorporeal blood circuits.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/280,450 filed Dec. 16, 2008, now U.S. Pat. No. 8,211,048, issued Jul. 3, 2012, which is the National Stage Entry of PCT/US2007/062589 filed Feb. 22, 2007, which, in turn, claims the benefit of U.S. provisional application Ser. No. 60/775,729 filed Feb. 22, 2006; U.S. provisional application Ser. No. 60/775,728 filed Feb. 22, 2006; U.S. provisional application Ser. No. 60/790,882 filed Apr. 11, 2006; U.S. provisional application Ser. No. 60/791,055 filed Apr. 11, 2006; and U.S. provisional application Ser. No. 60/845,646 filed Sep. 19, 2006, each of which is incorporated by reference herein.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to a system and method for the delivery of regional citrate anticoagulation (RCA) to extracorporeal blood circuits.

2. Background Art

Continuous renal replacement therapy (CRRT) is a form of extracorporeal blood treatment (EBT) that is performed in the intensive care unit (ICU) for patients with acute renal failure (ARF) or end-stage renal disease (ESRD), who are often hemodynamically unstable with multiple co-morbidities. In a specific form of CRRT, continuous veno-venous hemofiltration (CVVH) (FIG. 1), blood is pumped through a hemofilter and uremic toxin-laden plasma ultrafiltrate is discarded at a rate of 1-10 liters per hour (convective removal of solutes). An equal amount of sterile crystalloid solution (replacement fluid, CRRT fluid) with physiological electrolyte and base concentrations is simultaneously infused into the blood circuit either before the hemofilter (pre-dilution) or after the hemofilter (post-dilution) to avoid volume depletion and hemodynamic collapse. From a theoretical and physiological point of view, when run continuously for 24 hours per day, CVVH is the closest of all available renal replacement therapy (RRT) modalities today to replicating the function of the native kidneys. Most experts in the field believe that it should be the preferred treatment modality for unstable patients with renal failure. Nevertheless, 90% of RRT in the ICU is performed as intermittent hemodialysis (IHD), sustained low efficiency dialysis (SLED), or sometimes as continuous veno-venous hemo-diafiltration (CVVHDF). Common to all of these latter methods of RRT is that the removal of most solutes is predominantly by the process of diffusion from blood plasma through the membrane of the hemofilter into the dialysis fluid. Diffusion is less efficient in the removal of larger solutes than convection and therefore, from a theoretical standpoint, CVVH is a superior method of RRT.

The most important reason for the limited use of CVVH in the ICU is that anticoagulation is mandatory to prevent clotting of the extracorporeal circuit in 24-hour treatments. Systemic anticoagulation has an unacceptable rate of major bleeding complications and cannot be done safely. Similarly, extracorporeal blood treatments including plasmapheresis, plasma adsorption on specialized columns, blood banking procedures, lipid apheresis systems, plasma adsorption-based endotoxin removal, treatment with a bioartificial kidney device that contains live renal tubular cells, or with a liver replacement therapy circuit also require powerful regional anticoagulation. Regional citrate anticoagulation has emerged as a possible solution to the clinical problem of circuit clotting.

Citrate (or the quickly buffered citric acid) is present in the human plasma as the trivalent negative citrate anion. This ion chelates ionized calcium in the plasma resulting in a single negative Ca-citrate complex and in low free ionized calcium levels. Since the coagulation cascade requires free ionized calcium for optimal function, blood clotting in the extracorporeal blood circuit (EBC) can be completely prevented by an infusion of citrate into the arterial (incoming) limb of the EBC. When the blood is passed through the extracorporeal processing unit, the anticoagulant effect can be fully reversed by the local infusion of free ionized calcium into the venous (return) limb of the EBC. Therefore, theoretically, regional citrate anticoagulation can be both very powerful and fully reversible without systemic (intra-patient) bleeding tendencies.

Regional citrate anticoagulation has been performed for more than 20 years. Nevertheless, all currently described regional citrate anticoagulation methods are labor intensive and complex with the ICU nurse administering several potentially very dangerous IV infusions in the circuit and/or in central venous lines with frequent laboratory measurements and prescription adjustments. Physician errors in prescription and nursing errors in administration can quickly lead to major complications, and even to death. Due to its well-documented dangers, regional citrate anticoagulation has not gained wide use in clinical practice. The recognized dangers of RCA include hypernatremia; metabolic alkalosis; metabolic acidosis; hypocalcemia 1 (due to net calcium loss from the patient); hypocalcemia 2 (due to systemic citrate accumulation); rebound hypercalcemia (due to release of calcium from citrate after CVVH is stopped); hypophosphatemia; fluctuating levels of anticoagulation; nursing and physician errors; ionized hypomagnesemia; declining filter performance; trace metal depletion; access disconnection; wrong connection of citrate, calcium infusions, and/or of the blood circuit to the patient; and accidental disconnection of the citrate or calcium infusion.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a prior art system for continuous veno-venous hemofiltration (CVVH) or CVVH with dialysis (CVVHDF);

FIG. 2 illustrates a system according to the present invention for using citrate in the pre-dilution solution and infusion of a post-dilution solution to enhance removal of citrate in the hemofilter;

FIG. 3 illustrates use of a regional citrate anticoagulation (RCA) system according to the present invention to anticoagulate the extracorporeal circuit of applications other than CRRT;

FIGS. 4a-4b illustrate a continuous renal replacement therapy (CRRT) circuit based on pre- and post-dilution hemofiltration with an integrated online sensor system (OSS) and hematocrit sensors according to the present invention;

FIG. 5a illustrates a hemodialysis system which may be used for 24-hour sustained low efficiency dialysis (SLED) or 4-5 hour intermittent hemodialysis (IHD) with RCA according to the present invention;

FIG. 5b illustrates a conductivity-based online clearance monitor (OCM) according to the present invention for 24-hour SLED or IHD with online-generated dialysis fluid and automated RCA;

FIG. 6a illustrates a hemodialysis system which may be used for continuous veno-venous hemodialysis with pre-dilution hemofiltration (CVVHDF or c-SLEDF) with RCA according to the present invention;

FIG. 6b illustrates a conductivity-based OCM according to the present invention for pre-dilution CVVHDF with online-generated therapy fluid and automated RCA;

FIG. 7a illustrates a hemodialysis system which may be used for 4-5-hour post-dilution hemodiafiltration (intermittent post-HDF) with RCA according to the present invention;

FIG. 7b illustrates a conductivity-based OCM according to the present invention for post-dilution hemodiafiltration (HDF) with online-generated therapy fluid and automated RCA;

FIG. 8a illustrates a hemodialysis system which may be used for simultaneous pre- and post-dilution continuous veno-venous hemofiltration (CVVH) or 4-6 hour intermittent high volume hemofiltration (HVHF) with RCA according to the present invention;

FIG. 8b illustrates a conductivity-based OCM according to the present invention for pre- and post-dilution CVVH or HVHF with online-generated replacement fluid and automated RCA;

FIGS. 9a and 9b illustrate a triple lumen venous catheter with an infusion pathway according to the present invention;

FIGS. 10a and 10b illustrate a quadruple lumen catheter with an infusion pathway according to the present invention;

FIG. 10c illustrates a quadruple lumen vascular access catheter according to another aspect of the present invention with connection lines of different lengths and colors;

FIG. 10d illustrates a quadruple lumen vascular access catheter according to another aspect of the present invention with the male and female line connectors reversed and of different colors;

FIG. 11a illustrates connectors according to the present invention used to attach standard dialysis blood lines (independent arterial and venous blood circuit ends) for dialysis using separate arterial and venous needles;

FIG. 11b illustrates connectors according to the present invention used to attach a citrate-dedicated dialysis blood tubing (different arterial and venous blood circuit ends) for dialysis using separate arterial and venous needles;

FIG. 12a illustrates an arterial infusion line connector according to the present invention which may be used to attach a citrate-dedicated dialysis arterial blood line using separate arterial and venous needles;

FIG. 12b illustrates a venous infusion line connector according to the present invention which may be used to attach a standard or citrate-dedicated dialysis venous blood line using separate arterial and venous needles;

FIG. 13 illustrates citrate-dedicated blood circuit tubing with integrated arterial and venous medication infusion line connectors according to the present invention which may be used to connect the extracorporeal circuit to the patient using separate arterial and venous access needles or a double lumen hemodialysis catheter;

FIGS. 14a-14b illustrates a triple lumen vascular access catheter according to the present invention for use with single needle dialysis operational mode;

FIGS. 14c-14d illustrates a triple lumen vascular access catheter according to the present invention for use with single needle dialysis operational mode that accommodates citrate-dedicated blood tubing and medication infusion lines with different arterial and venous connectors;

FIG. 15a illustrates a connector according to the present invention for circuit priming and for attachment to a single vascular access needle from a dialysis blood line set and medication infusion lines for use with single needle dialysis operational mode;

FIG. 15b illustrates a connector according to the present invention for circuit priming and for attachment to a single vascular access needle from a dialysis blood line set for use with single needle dialysis operational mode;

FIGS. 15c and 15d illustrate a connector according to the present invention for circuit priming and for attachment to a single vascular access needle from a citrate-dedicated dialysis blood line for use with single needle dialysis operational mode;

FIG. 16a illustrates a connector according to the present invention for attachment to a single vascular access needle or to a single lumen catheter from a dialysis blood line for use with single needle dialysis operational mode;

FIG. 16b illustrates a connector according to the present invention for attachment to a single vascular access needle or to a single lumen catheter from a citrate-dedicated dialysis blood line for use with single needle dialysis operational mode;

FIG. 17a illustrates a hemodialysis system which may be used for 24-hour sustained low efficiency dialysis (SLED) or 4-5 hour intermittent hemodialysis (IHD) with RCA according to the present invention;

FIG. 17b illustrates a hemodialysis system which may be used for simultaneous pre- and post-dilution continuous veno-venous hemofiltration (CVVH) or 4-6 hour intermittent high volume hemofiltration (HVHF) with RCA according to the present invention;

FIG. 17c illustrates a hemodialysis system with sensors and online generation of fluid for continuous SLED with RCA according to the present invention;

FIG. 17d illustrates a hemodialysis system with sensors and online generation of fluid for pre-dilution CVVH with RCA according to the present invention;

FIG. 18 depicts a calculation according to the present invention of the maximum possible systemic citrate level during RCA;

FIG. 19 depicts a calculation according to the present invention of the conductivity of plasma (Cpin) in the arterial limb of the extracorporeal circuit entering the hemodialyzer;

FIG. 20a illustrates an OCM in accordance with the present invention;

FIG. 20b illustrates an OCM in accordance with another aspect of the present invention;

FIG. 21 depicts a comparison according to the present invention of the effects of permanent access recirculation on the fresh dialysis fluid conductivity bolus-based online dialysance measurement (Deffective) versus the circuit arterial limb blood conductivity bolus-based online dialysance measurement (DBolus);

FIG. 22 illustrates a basic hemofiltration circuit according to the present invention which may be used to extract a small amount of ultrafiltrate for chemical analysis;

FIG. 23 illustrates a complete hemofiltration circuit according to the present invention which may be used to extract a small amount of ultrafiltrate for chemical analysis;

FIG. 24 illustrates a hemofiltration circuit according to the present invention which may be used for priming and initial testing of pumps and pressure transducers;

FIG. 25 illustrates a complete hemofiltration circuit according to the present invention which may used to extract a small amount of ultrafiltrate for chemical analysis;

FIG. 26 illustrates a hemofiltration circuit according to the present invention showing the location of the triple lumen venous catheter with an infusion port at the tip of the withdrawal lumen;

FIG. 27a illustrates an air gap backflow prevention device which may be used to isolate ultrafiltrate from the patient circuit according to the present invention;

FIG. 27b illustrates a backflow prevention device comprising a series of one way valves which may be used to isolate ultrafiltrate from the patient circuit according to the present invention;

FIG. 27c illustrates a reduced pressure zone backflow prevention device which may be used to isolate ultrafiltrate from the patient circuit according to the present invention;

FIG. 28a illustrates a hemofiltration circuit according to the present invention showing a possible location for a reduced pressure zone backflow prevention device;

FIG. 28b illustrates a hemofiltration circuit according to the present invention showing a possible location for an air gap backflow prevention device;

FIG. 29a depicts a configuration according to the present invention for deriving the patient systemic solute level (Csys) by measuring the ultrafiltrate solute concentration CUF and dividing by the hemofilter sieving coefficient S for the specific solute;

FIG. 29b depicts a configuration according to the present invention for deriving the patient systemic citrate level CSys by measuring the ultrafiltrate citrate concentration CUF;

FIG. 29c depicts a configuration according to the present invention for deriving the patient systemic citrate level CSys by measuring the ultrafiltrate citrate concentration CUF;

FIG. 30a is a schematic illustration of a citrate, calcium and magnesium sensor according to the present invention for use in a continuously flowing fluid circuit;

FIG. 30b is a schematic illustration of a citrate sensor according to the present invention for use in a continuously flowing fluid circuit;

FIG. 31 is a schematic illustration of systemic citrate kinetics during citrate anticoagulation including citrate generation, citrate body clearance and citrate filter clearance in accordance with the present invention;

FIG. 32 is a schematic illustration of solute fluxes in the extracorporeal circuit during CRRT according to the present invention using citrate as a small solute example;

FIG. 33 is a graph depicting plasma citrate concentration in the patient during RCA in accordance with the present invention;

FIG. 34a is a graph depicting citrate concentration measured by a citrate sensor in the drain circuit of a renal replacement therapy machine utilizing RCA with fixed CRRT prescription settings according to the present invention that result in the development of a citrate steady state determined by the CRRT settings and the patient\'s citrate metabolism;

FIG. 34b is a graph depicting citrate concentration measured by a citrate sensor in the drain circuit of a dialysis machine utilizing RCA according to the present invention; and

FIG. 34c is a graph depicting the effluent citrate concentration as measured by an online filter clearance and patency monitor according to the present invention.

DETAILED DESCRIPTION

OF THE INVENTION

As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale, some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.

The present invention includes a comprehensive, two replacement fluid system and method for the delivery of regional citrate anticoagulation (RCA) to extracorporeal blood circuits, wherein the system may include an online clearance monitor (OCM) and a circuit effluent online sensor system (OSS) for the continuous determination of patient plasma content of ultrafilterable solutes. It is understood that components described for one system according to the present invention can be implemented within other systems according to the present invention as well.

The system and method according to the present invention is capable of delivering RCA to an extracorporeal system requiring anticoagulation. The system addresses the difficulties and risks to patients associated with extracorporeal anticoagulation methods and CRRT devices currently in use for continuous veno-venous hemofiltration (CVVH). The system may include a combination of various CRRT and dialysis machine hardware components, a software control module, and a sensor module to measure citrate or other solute levels online to ensure the maximum accuracy and safety of treatment prescriptions, and the use of replacement fluids designed to fully exploit the design of the system according to the present invention.

With reference first to FIG. 2, a system for CRRT according to the present invention is illustrated and designated generally by reference numeral 10. System 10 includes a CRRT circuit 12 including an arterial blood line 14, a hemofilter 16 in fluid communication with arterial blood line 14, and a venous blood line 18 in fluid communication with hemofilter 16. Arterial and venous blood lines 14, 18 are arranged to be connected to an access catheter 20 in order to withdraw blood from and return blood to a patient. A blood pump 22 is operably connected to arterial blood line 14 in order to facilitate movement of blood from access catheter 20 through CRRT circuit 12. According to one aspect of the present invention, blood pump 22 may be precise, with pumping speeds which may be adjustable in 5 ml/min or finer increments. An effluent line 24 is also in fluid communication with hemofilter 16 for carrying effluent fluid to a drain to be discarded. An ultrafiltration pump 26 may be operably connected to effluent line 24 to facilitate this process, wherein ultrafiltration pump 26 may be an overall ultrafiltration pump that may be non-volumetric in a scale-based system, or a net ultrafiltration pump which may be volumetric.

While CRRT circuit 12 is shown and described, it is understood that the system according to the present invention may comprise any extracorporeal circuit, either wholly or only partially outside the body. Furthermore, it is understood that “patient” as used herein is not limited to human beings, but may comprise other species as well.

With continuing reference to FIG. 2, system 10 further comprises a pre-filter infusion line 28 having a pre-dilution connection 30 to arterial blood line 14 upstream from hemofilter 16. Pre-filter infusion line 28 may supply a pre-dilution solution, such as a citrate-containing anticoagulation solution as described below, from a pre-filter source (e.g., bag 32). A pre-filter replacement fluid pump 34 may be operably connected to pre-filter infusion line 28 to facilitate infusion of the pre-dilution solution, wherein pre-filter pump 34 may be implemented as a volumetric pump. A non-volumetric pump may be acceptable with scale-based balancing. Hemofilter 16 may then be used to remove the citrate anticoagulant (and the bound calcium) from the blood before it is returned to the patient. System 10 may also include a post-filter infusion line 36 having a post-dilution connection 38 to venous blood line 18 downstream from hemofilter 16 for restoring the so processed anticoagulated blood to normal volume. Post-filter infusion line 36 may supply a post-dilution solution, such as an essentially calcium-free, bicarbonate solution as described below, from a post-filter source (e.g., bag 40). A post-filter replacement fluid pump 41 may be operably connected to post-filter infusion line 36 to facilitate infusion of the post-dilution solution, wherein post-filter pump 41 may be implemented as a volumetric pump, although a non-volumetric pump may be acceptable with scale-based balancing.

In accordance with the present invention, an additional IV infusion line 42 and associated IV infusion pump 44 may be utilized for an IV solution infusion into venous blood line 18 downstream from post-dilution connection 38. In particular, IV infusion pump 44 may be used to administer a pre-mixed calcium and magnesium-containing infusion from an IV infusion source (e.g., bag 46) in coordination with the CVVH prescription (described below) and patient chemistry values. Patients will differ in their need for calcium supplementation to reverse the citrate anticoagulation as they will have different albumin and steady state citrate levels. There may also be differences in calcium release from or uptake into the bones. Finally, one may have to administer extra calcium and magnesium in the initial few-hour “loading” phase of RCA to saturate the expanding systemic citrate pool until the steady state is reached. As depicted in FIG. 3, the anticoagulated blood restored to normal volume with the post-filter replacement fluid infusion can be perfused into any secondary extracorporeal blood treatment (EBT) device 48.

FIG. 4a illustrates additional components which may be included in system 10 according to the present invention. System 10 may integrate online (e.g., optical) hematocrit sensors 50 and/or 52 operably connected to arterial blood line 14 to determine the dilution of the incoming blood and in communication with an associated display 54. Hematocrit sensors 50, 52 may be deployed in duplicate, one before (sensor 50) and one after (sensor 52) pre-dilution connection 30. First hematocrit sensor 50 may be used to determine arterial plasma flow in real time. Second hematocrit sensor 52 may allow for checking the reliability of the two sensors 50, 52 against each other when the pre-dilution fluid is not running When the pre-dilution fluid is running at a known (machine settings and volumetric pump defined) rate, the readout from hematocrit sensors 50, 52 may allow for the determination of the degree of hemodilution with the pre-filter infusion, and thereby for the calculation of the delivered blood flow to the dialyzer 16. Online hematocrit sensors 50 and/or 52 allow minute-to-minute calculation of the plasma volume in the blood flowing into the dialyzer 16. This ensures the most accurate and possibly continuously-adjusted dosing of citrate-containing pre-filter fluid to achieve the target citrate to plasma flow ratio. Hematocrit sensors 50 and/or 52 can also be used to detect access recirculation. Finally, the readout from first hematocrit sensor 50 (before the pre-dilution infusion) allows for monitoring the patient\'s blood volume and will detect excessive net ultrafiltration leading to intravascular volume depletion with concomitant hemoconcentration in the patient before hemodynamic compromise could result. Doppler based fluid flow, hematocrit monitors, and volumetric fluid pumps may be used on arterial and venous blood lines 14, 18 as well as the replacement fluid lines 28, 36 and effluent fluid line 24 for maximal precision in ensuring that the set blood flow rate on blood pump 22 matches the actual blood flow delivered by the action of blood pump 22, and that all other fluid flows (pre-filter fluid flow, effluent flow, venous blood flow and net ultrafiltration amount) are all the same as defined by the machine settings.

As shown in FIG. 4b, a total of four hematocrit sensors 50, 51, 52, 53 may be used to determine the dilution of the blood hemoglobin in the arterial limb 14 as well as the venous limb 18 of the extracorporeal circuit 12. FIG. 4b depicts a comprehensive battery of four online hematocrit sensors 50-53 deployed in close physical proximity to each other, at strategic points of the extracorporeal blood circuit 12 for a single modular implementation integrated into system 10 according to the present invention. Such integration is fully possible and is contemplated in all other systems described herein. In addition to sensors 50, 52 described above, sensors 51, 53 may be deployed in duplicate, one before and one after the post-dilution connection 38. The venous limb hemoglobin concentration, which may be determined using sensor 51, may be temporarily increased by increased ultrafiltration on the hemofilter 16 with or without a simultaneous decrease in the rate of infusion of one or more of the crystalloid fluids used by the system. Conversely, the circuit venous limb hemoglobin concentration (sensor 51) can be temporarily decreased by faster infusion of one or more of the crystalloid fluids used by the system with or without a simultaneous decrease in ultrafiltration. The effect on the arterial limb hemoglobin concentration (sensor 50) of such programmed, intermittent, temporary changes in the venous limb hemoglobin concentration allow the precise, automated, intermittent calculation of access recirculation, R as apparent to those skilled in the art.

System 10 may further include an integrated online sensor system (OSS) comprising a solute sensor or sensor array 56 operably connected to effluent fluid line 24 for determining the solute concentration of the ultrafiltrate, and in communication with an associated display 58. In one embodiment, solute sensor 56 may comprise an online citrate sensor which may be used to eliminate the risk of undetected citrate accumulation and may double as an online delivered clearance and liver function monitor. Solute sensor 56 may also function as an online calcium and magnesium sensor. The current clinical practice of monitoring laboratory parameters every six hours to detect citrate accumulation is not applicable to the new treatment protocols with higher clearance goals and a concomitant more rapid citrate accumulation that would occur with a sudden decline in liver function. More frequent laboratory testing is clinically not practical. Solute sensor 56 according to the present invention allows for the derivation of the citrate, calcium and magnesium level in the patient\'s systemic plasma. Under such monitoring, RCA may be performed with complete safety. The post-filter fluid summary bicarbonate content could also be adjusted and the liver function monitored in real time through observing the metabolism of citrate. Solute sensor 56 may also serve as an online clearance module.

All of these elements may be coordinated and monitored by a control program, which may be utilized to determine the optimal ratio of pre- and post-dilution fluids and the fluid flow rates required to reach treatment goals while minimizing citrate load into the patient.

Disposable, sterile fluid circuits may be utilized according to the present invention. System 10 may work with, but is not limited to, blood flows in the range of 50-450 ml/min with flows optimally around the 75 to 200 ml/min range (for 24-hour CVVH versus high volume hemofiltration (HVHF) operational mode). This is a benefit, as even the least optimally performing catheter access will deliver such flows. According to one aspect of the present invention, hemofilter 16 may be removable from system 10, so that an appropriate size filter could be used for the prescribed blood flow and hourly ultrafiltration goals, and also so that elective filter changes could be performed every 24 hours because of predictable protein fouling even in the absence of clotting. More frequent filter changes may also be needed for the clinical application (e.g. cytokine removal).

Since only convective clearance may be used according to the present invention (no diffusive or dialytic component is required), the anticoagulation achieved remains uniform along the axis of hemofilter 16, promising superior results when compared with other protocols using CVVH with simultaneous dialysis (CVVHDF). The amount of middle molecular weight uremic toxin clearance including inflammatory cytokines will also be predictably greater than in any prior CRRT implementations. System 10 according to the present invention running on a CVVH machine or a dedicated device with the necessary pumps and controls may be used to safely provide citrate anticoagulation to any extracorporeal blood circuit, wherein the maximum operational blood flow may be, but is not limited to, 450 ml/minute.

The RCA system according to the present invention eliminates the risks associated with a separate concentrated citrate infusion for anticoagulation in CVVH and other extracorporeal circuits. Citrate removal by hemofilter 16 is important for safe operation of a CVVH system using citrate anticoagulation. If hemofiltration is stopped and blood continues to flow through the circuit 12 to prevent coagulation, the separate infusion of citrate has to be stopped immediately or the patient will receive an excess amount of citrate which could be life threatening. In RCA system 10, if for any reason hemofiltration stops and blood continues to flow through circuit 12 to prevent coagulation (e.g., replacement solution bags 32, 40 are empty), the delivery of citrate with the pre-dilution fluid and also the delivery of calcium with the post-dilution fluid are immediately aborted to protect the patient from an infusion of excess citrate and calcium.

The RCA system according to the present invention markedly reduces the need for health care personnel to monitor and adjust CRRT based on hemofiltration. The use of the post-filter fluid provides for enhanced clearance and variability in the treatment prescription with the varying potassium and alkali content depending on the fluid selected as described below. Finally, the RCA system according to the present invention greatly reduces the risk of citrate accumulation in the patient associated with RCA during hemofiltration or any other extracorporeal blood processing intervention. The specific dangers of RCA as addressed by the RCA system according to the present invention are explained below: 1) Hypernatremia: Only isonatric solutions may be used including the calcium solution. Clinically significant hypernatremia (or hyponatremia) due to the treatment cannot occur. 2) Metabolic alkalosis: The sum of bicarbonate and anions metabolizable to bicarbonate (in mEq) may be kept between 25-50 mEq bicarbonate equivalents per liter of replacement fluid. This is in keeping with fluid alkali content per liter prescribed in most CVVH protocols in the literature. Mild metabolic alkalosis with systemic plasma bicarbonate in the range of 25-30 is possible with high clearance goals but it is not likely to occur or be clinically highly relevant. Changing the ratio of the 25 and 50 bicarbonate bags on the scales (2:0, 1:1, 0:2) and/or supplementing any post-dilution fluid bag with up to 5 mEq/L NaHCO3 (from standard IV push bicarbonate ampoules) will allow flexible adjustment of the overall post-dilution fluid bicarbonate content from 25 to 55 in about 5 mEq/L increments. 3) Metabolic acidosis: With the above flexibility in fluid alkali content, it could only develop if citrate were not metabolized. Even so, if the post-dilution fluid is bicarbonate based, life-threatening wash out of bicarbonate could not occur with prescriptions with >=50% citrate extraction. Citrate sensor 56 may detect the lack of liver metabolism of citrate and may alert the operator to change to a pair of replacement fluids and treatment settings specifically designed for anhepatic patients. The additional citric acid in the pre-filter fluid is not an effective acid from the standpoint of the patient, as the bicarbonates that it consumes are regenerated through the metabolism of the citrate anion in the liver without any net acid generation (analogous to the course diabetic ketoacidosis in a Type 1 diabetic ESRD patient). In the near anhepatic patient, bicarbonate lost through ultrafiltration will not be regenerated by citrate metabolism. However, even such patients can continue on RCA with CVVH, provided that the citrate extraction is >=60%, 50 bicarbonate post-dilution fluid is used, and the calcium homeostasis is adequately managed with a carefully selected (and higher) dose of the calcium and magnesium infusion. 4) Hypocalcemia 1 (due to net calcium loss from the patient): The ultrafiltrate total calcium and magnesium losses are easily calculable in the RCA system according to the present invention. Calcium and magnesium supplements needed in the form of the dedicated infusion regulated by the system may be calculated by a dosing program also taking into account any ongoing citrate accumulation predicted by kinetic modeling and measured by citrate sensor 56. The patient\'s systemic total and ionized calcium levels may be measured every 6 hours as well as calcium volume of distribution determined by anthropomorphic and citrate sensor data. Magnesium may be dosed to maintain a total plasma Ca:Mg=2:1 mM ratio (as ionized magnesium measurements are not routinely available and all chelators of calcium (albumin, citrate, etc) also chelate magnesium.

Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this System and method for delivery of regional citrate anticoagulation to extracorporeal blood circuits patent application.
###
monitor keywords

Browse recent Henry Ford Health System patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like System and method for delivery of regional citrate anticoagulation to extracorporeal blood circuits or other areas of interest.
###


Previous Patent Application:
Acoustic access disconnection systems and methods
Next Patent Application:
Device for removing fluid from blood in a patient
Industry Class:
Surgery
Thank you for viewing the System and method for delivery of regional citrate anticoagulation to extracorporeal blood circuits patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 1.37468 seconds


Other interesting Freshpatents.com categories:
Tyco , Unilever , 3m

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2991
Key IP Translations - Patent Translations

     SHARE
  
           

stats Patent Info
Application #
US 20120265116 A1
Publish Date
10/18/2012
Document #
13528078
File Date
06/20/2012
USPTO Class
604/607
Other USPTO Classes
International Class
/
Drawings
59


Your Message Here(14K)


Citrate


Follow us on Twitter
twitter icon@FreshPatents

Henry Ford Health System

Browse recent Henry Ford Health System patents

Surgery   Blood Drawn And Replaced Or Treated And Returned To Body   Constituent Removed From Blood And Remainder Returned To Body   Anticoagulant Added