FreshPatents.com Logo
stats FreshPatents Stats
2 views for this patent on FreshPatents.com
2014: 1 views
2013: 1 views
Updated: December 22 2014
newTOP 200 Companies filing patents this week


Advertise Here
Promote your product, service and ideas.

    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Your Message Here

Follow us on Twitter
twitter icon@FreshPatents

Method for manufacturing display device, and transparent resin filler

last patentdownload pdfdownload imgimage previewnext patent

20120263964 patent thumbnailZoom

Method for manufacturing display device, and transparent resin filler


The present invention prevents air bubbles from being mixed in at the time of resin filling. In a supplying step (FIGS. 5D, 5E), a transparent resin filler is dispensed and supplied from supply means so that the transparent resin filler comes into contact with both of an image display panel and a front panel to draw a predetermined pattern, and the transparent resin filler is maintained in contact with both of the panels until drawing of the predetermined pattern is completed.

Browse recent Sony Chemical & Information Device Corporation patents - Tokyo, JP
Inventors: Tomoyuki Toyoda, Yoshihisa Shinya, Yasumi Endo
USPTO Applicaton #: #20120263964 - Class: 428522 (USPTO) - 10/18/12 - Class 428 
Stock Material Or Miscellaneous Articles > Composite (nonstructural Laminate) >Of Addition Polymer From Unsaturated Monomers >Ester, Halide Or Nitrile Of Addition Polymer



view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120263964, Method for manufacturing display device, and transparent resin filler.

last patentpdficondownload pdfimage previewnext patent

TECHNICAL FIELD

The present invention relates to a method for manufacturing a display device in which a transparent resin filler is filled between an image display panel and a front panel, and to the transparent resin filler.

The present application asserts priority rights based on JP Patent Application 2009-236520 filed in Japan on Oct. 13, 2009. The total contents of disclosure of the Patent Application of the senior filing date are to be incorporated by reference into the present application.

BACKGROUND ART

In related art, there has been proposed a display device in which a transparent resin filler is filled between an image display panel and a front panel. As the transparent resin filler, optical elastic resin having refractive-index matching property is used to improve viewability and impact resistance of a display device (For example, refer to Patent Literatures 1 and 2.).

As a resin filling method, there has been conventionally used a inversion method in which a resin is applied to either an image display panel or a front panel and made to hang down without opposing its own weight, then the image display panel and the front panel are bonded together so as to prevent air bubbles from being mixed in.

However, a larger display device inevitably needs more resin to be applied, and it is difficult to maintain a shape of the applied resin, therefore, when the resin applied side is inverted, resin drips at many points to form closed spaces, whereby air bubbles remain.

A tilting method in which resin is filled by tilting either an image display panel or a front panel can secure the uniformity of a resin amount at the time of application, however, it is difficult to secure the uniformity of a final resin thickness due to pushing out of resin. In addition, the panels are bonded together with bringing a lower side panel which resin is applied closer to an upper side panel, therefore air bubbles could remain.

As a filling method to solve these problems, there has been proposed a Gap-Dispense method to arrange an image display panel and a display panel in parallel with securing a predetermined Gap amount and fill the Gap with resin.

However, in the Gap-Dispense method, when resin is supplied, air bubbles are mixed in a transparent resin filler before drawing of a predetermined pattern is completed, thereby air bubbles sometimes remain in a display device.

RELATED TECHNICAL DOCUMENTS Patent Documents

Patent Document 1: PCT International Publication No. WO2008/007800 Patent Document 2: PCT International Publication No. WO2008/126893

SUMMARY

OF THE INVENTION Problem to be Solved by the Invention

In view of the above problems, the present invention has been made, the present invention provides a method for manufacturing a display device, the method being capable of preventing residual air bubbles, and a transparent resin filler.

Means to Solve the Problem

In order to solve the above-mentioned problems, a method for manufacturing a display device according to an embodiment of the present invention is a method for manufacturing a display device in which a transparent resin filler is filled between an image display panel and a front panel, and comprises an arranging and inserting step of arranging the image display panel and the front panel with a predetermined gap, and inserting supply means between the image display panel and the front panel, the supply means configured to dispense and supply the transparent resin filler;

a supplying step of supplying the transparent resin filler from the supply means; a filling step of pressing the image display panel or the front panel to fill a gap between both of the panels with the transparent resin filler; and a filled layer forming step of forming a layer filled with transparent resin by curing the transparent resin filler, wherein, in the supplying step, by dispensing and supplying the transparent resin filler from the supply means so that the transparent resin filler comes into contact with both of the image display panel and the front panel, a predetermined pattern is drawn, and the transparent resin filler is maintained in contact with both of the panels until drawing of the predetermined pattern is completed.

The transparent resin filler according to an embodiment of the present invention is a transparent resin filler which is filled between the image display panel and the front panel of the display device, and has a viscosity of 800 to 3500 mPa·s.

Advantageous Effects of Invention

According to an embodiment of the present invention, at the time of supplying resin, the transparent resin filler is kept in contact with both of the panels until drawing of a predetermined pattern is completed, therefore, even in a large display device, as well as a small display device, air bubbles can be prevented from remaining in the transparent resin filler.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a side view showing a filling device.

FIG. 2 is a plan view showing the filling device.

FIG. 3A is a plan view showing a tip of a dispensing nozzle, and FIG. 3B is a side view showing the tip of the dispensing nozzle.

FIG. 4 is a sectional view showing the dispensing nozzle which is dispensing a filling liquid.

FIG. 5A is a sectional view showing a step in which a liquid crystal panel is stuck by suction to a liquid crystal panel holding stage while a protective panel is stuck by suction to a protective panel holding stage. FIG. 5B is a sectional view showing a step of inserting the dispensing nozzle into a gap between the liquid crystal panel and the protective panel. FIG. 5C is a sectional view showing a step of bringing the liquid crystal panel holding stage and the protective panel holding stage closer, and holding the liquid crystal panel and the protective panel with a predetermined gap. FIG. 5D is a sectional view showing a step of dispensing an adhesive from the dispensing nozzle. FIG. 5E is a sectional view showing a step of drawing a predetermined drawing pattern by dispensing an adhesive from the dispensing nozzle. FIG. 5F is a sectional view showing a step of removing the dispensing nozzle from the gap between the liquid crystal panel and the protective panel. FIG. 5G is a sectional view showing a step of pressing the liquid crystal panel and the protective panel to spread out the adhesive.

FIG. 6A is a plan view showing a step in which the liquid crystal panel is stuck by suction to the liquid crystal panel holding stage while the protective panel is stuck by suction to the protective panel holding stage.

FIG. 6B is a plan view showing a step of inserting the dispensing nozzle into the gap between the liquid crystal panel and the protective panel.

FIG. 6C is a plan view showing a step of dispensing an adhesive from the dispensing nozzle.

FIG. 6D is a plan view showing a step of drawing a predetermined drawing pattern by dispensing an adhesive from the dispensing nozzle.

FIG. 6E is a plan view showing a step of pressing the liquid crystal panel and the protective panel to spread out the adhesive.

FIG. 6F is a plan view showing a step in which the adhesive is uniformly filled in every corner of the gap between the liquid crystal panel and the protective panel without protruding out of the gap.

FIG. 7 is a plan view showing a drawing pattern by the filling device.

FIG. 8 is a plan view showing another filling device.

FIG. 9 is a graph showing verification results of viscosity and Gap size.

DESCRIPTION OF EMBODIMENTS

Hereinafter, with reference to the drawings, a specific embodiment to which the present invention is applied will be described in detail in the following order.

1. Method for manufacturing display device 1-1. Filling device 1-2. Device operation 1-3. Another drawing pattern 1-4. Another device configuration

2. Transparent resin filler

3. Example

1. Method for Manufacturing Display Device

In a method for manufacturing a display device described as a specific embodiment of the present invention, an image display panel and a front panel are arranged with a predetermined gap, and supply means configured to dispense and supply a transparent resin filler is inserted between the image display panel and the front panel to supply a transparent resin filler from the supply means. Then, the image display panel or the front panel is pressed to fill a gap between both of the panels with the transparent resin filler, and a transparent resin filled layer is formed by curing the transparent resin filler. When the transparent resin filler is supplied by using the supply means, the transparent resin filler is dispensed and supplied from the supply means so that the transparent resin filler comes into contact with both of the image display panel and the front panel, whereby a predetermined pattern is drawn, and the transparent resin filler is kept in contact with both of the panels until the drawing of the predetermined pattern is completed. Thus, even in a large display device, as well as a small display device, air bubbles can be prevented from remaining in the transparent resin filler.

[1-1. Filling Device]

Next will be described a filling device for a transparent resin filler which is preferably used in the method for manufacturing a display device.

FIG. 1 is a side view showing the filling device. By using a liquid crystal panel 2 which is one of image display panels and a protective panel 3 which is a front panel to protect a surface of the liquid crystal panel 2 as a pair of plate-shaped objects, the filling device 1 fills a gap between the liquid crystal panel 2 and the protective panel 3 with an adhesive 7 as a transparent resin filler to bond together the liquid crystal panel 2 and the protective panel 3.

As shown in FIG. 1 and FIG. 2, the filling device 1 comprises a liquid crystal panel holding stage 4 to hold the liquid crystal panel 2, a protective panel holding stage 5 to hold the protective panel 3, an actuator 6 to move the liquid crystal panel 2 and the protective panel 3 apart and closer by moving up and down the protective panel holding stage 5, a dispensing nozzle 10 to be inserted between the liquid crystal panel 2 and the protective panel 3 as a supply means to dispense the adhesive 7, a nozzle moving mechanism 11 to move the dispensing nozzle 10, a syringe 15 which is connected to the dispensing nozzle 10 to store the adhesive 7, and a pressing mechanism 13 to dispense the adhesive 7 from a dispensing opening 17 of the dispensing nozzle 10, and these are arranged in a table 14.

The liquid crystal panel 2 is a liquid crystal cell in which liquid crystal is sealed between an upper and a lower glass substrate each of which is formed in a substantially rectangular shape, and the protective panel 3 is adhered to one of the substrates which faces a viewer side. The protective panel 3 improves viewability of the liquid crystal panel 2 and protects the liquid crystal panel 2 from impact and damage, and, for example, a transparent plate, such as a tempered glass plate and an acrylic plate, is used.

The liquid crystal panel holding stage 4 holding the liquid crystal panel 2 is fixed on the table 14, and hold the liquid crystal panel 2 by means such as vacuum suction, etc. so that a face to be bonded to the protective panel 3 faces the protective panel 3. The protective panel holding stage 5 holding the protective panel 3 is supported by the actuator 6 on the liquid crystal panel holding stage 4, and hold the protective panel 3 by means such as vacuum suction, etc. so that a face to be bonded to the liquid crystal panel 2 faces the liquid crystal panel 2. Moreover, the liquid crystal panel holding stage 4 and the protective panel holding stage 5 are configured that each of the sucking faces for the liquid crystal panel 2 or the protective panel 3 is set in a vertical direction, and a main face of each of the liquid crystal panel 2 and the protective panel 3 is held in a vertical direction.

The liquid crystal panel holding stage 4 and the protective panel holding stage 5 is preferably transparent in order to align the liquid crystal panel 2 and the protective panel 3, but may not be necessarily transparent, and the position alignment between the panels may be performed by known methods.

The actuator 6 which supports the protective panel holding stage 5 moves the protective panel holding stage 5 in the up-and-down directions, that is, in the direction of arrow Z and the opposite direction of arrow Z in FIG. 1. The actuator 6 moves up the protective panel holding stage 5 when each of the stages 4 and 5 is made to hold the liquid crystal panel 2 and the protective panel 3, while moves down the protective panel holding stage 5 when the adhesive 7 is filled in the gap of the liquid crystal panel 2 and the protective panel 3.

Moreover, by moving down the protective panel holding stage 5 at the time of filling of the adhesive 7, the actuator 6 holds the liquid crystal panel 2 and the protective panel 3 with a predetermined gap which enables the dispensing nozzle 10 described later to be inserted through and the adhesive 7 to be applied with keeping the adhesive 7 in contact with the liquid crystal panel 2 and the protective panel 3. Then, after the adhesive 7 is filled in, the actuator 6 moves further down the protective panel holding stage 5, presses the protective panel 3 toward the liquid crystal panel 2 at a predetermined pressure for a predetermined time, and spread out the adhesive over the whole surfaces of the liquid crystal panel 2 and the protective panel 3.

The dispensing nozzle 10 which dispenses the adhesive 7 between the liquid crystal panel 2 and the protective panel 3 has a cylindrical body in parallel to each of main faces of the liquid crystal panel 2 which is held at the liquid crystal panel holding stage 4 and the protective panel 3 which is held at the protective panel holding stage 5. Moreover, the dispensing nozzle 10 is coupled to a syringe 15 which supplies the adhesive 7, and thereby supported at a height which enables the dispensing nozzle 10 to move forward and backward inside the gap between the liquid crystal panel 2 and the protective panel 3, which are closely positioned each other, without contacting both of the panels. By the nozzle moving mechanism 11, the dispensing nozzle 10 moves in the opposite direction of arrow X in FIG. 1 and in the direction of arrow Y and the opposite direction of arrow Y in FIG. 2, and thereby draws a predetermined dispensing pattern described later inside the gap between the liquid crystal panel 2 and the protective panel 3.

As shown in FIGS. 3A and 3B, an upper surface of a tip of the dispensing nozzle 10 is cut so that a dispensing opening 17 is directed upward in a vertical direction. Therefore, when the dispensing nozzle 10 begins to dispense the adhesive 7, the adhesives 7 is first made to adhere to the protective panel 3 positioned above, then, made to adhere to the liquid crystal panel 2 positioned below by gravity. Then, with dispensing the adhesive 7, the dispensing nozzle 10 moves inside the gap between the liquid crystal panel 2 and the protective panel 3, and as shown in FIG. 4, the adhesive 7 is applied, with keeping adhering to both sides of the liquid crystal panel 2 and the protective panel 3.

Thus, the filling device 1 makes the dispensing opening 17 of the dispensing nozzle 10 directed upward, and applies the adhesive 7 in such a manner that the adhesive 7 keeps adhering to both sides of the liquid crystal panel 2 and the protective panel 3, and thereby can prevent air bubbles from remaining in the adhesive 7.

In addition, as shown in FIG. 3A, the dispensing nozzle 10 is formed so as to have a diameter φ of, for example, 6 mm≧φ≧2 mm. This diameter φ is determined depending on a gap between the liquid crystal panel 2 and the protective panel 3, and a value of a diameter φ is chosen so that the dispensing nozzle 10 does not come into contact with both of the panels. Moreover, the dispensing nozzle 10 is formed by using metal or industrial plastics, and has rigidity which enables the dispensing nozzle 10 to dispense the adhesive 7 without bending. That is, the dispensing nozzle 10 applies the adhesive 7 without coming into contact with the liquid crystal panel 2 and the protective panel 3.

Furthermore, as shown in FIG. 3B, the dispensing nozzle 10 is formed so as to have an angle α of the dispensing opening 17 of 90°>α≧30°. If the angle α is not less than 90°, the dispensing nozzle 10 is incapable of adhering the adhesive 7 to the protective panel 3 at the time of beginning to dispense, and the adhesive 7 remains in the dispensing opening 17, and thus the possibility that the adhesive adheres to unexpected portions arises. If the angle α is less than 30°, it becomes hard for the dispensing nozzle 10 to make the adhesive drop down to the liquid crystal panel 2 positioned below at the time of beginning to dispense, and thus the possibility that air bubbles are caught in arises. Specifically, the angle α is determined within an range of 90°>α≧30° depending on viscosity of the adhesive 7, and there is selected an angle which is suitable for making the adhesive 7 adhere to the protective panel 3 positioned above, adhere to the liquid crystal panel 2 without air bubbles being caught in, and dispensed with keeping in contact with both of the panels.

The nozzle moving mechanism 11 to move the dispensing nozzle 10 comprises a first nozzle stage 19 to mount the syringe 15, and a second nozzle stage 20 to mount a first nozzle stage 19. In the first nozzle stage 19, the syringe 15 is equipped on an upper surface 19a while a slider 22 is installed into a lower surface 19b. The first nozzle stage 19 is movable in the direction of arrow Y and the opposite direction of arrow Y in FIG. 2 by sliding the slider 22 along a first guide rail 23 which is arranged in the second nozzle stage 20.

In the second nozzle stage 20, the first guide rail 23 to guide the first nozzle stage 19 is formed on the upper surface 20a, while the slider 25 which fits into the second guide rail 24 on the table 14 is formed on the lower surface 20b. The second nozzle stage 20 is movable in the direction of arrow X and the opposite direction of arrow X in FIG. 1 by sliding the slider 25 along a second first guide rail 24 which is formed on the table 14.

The filling device 1 is equipped with the two first nozzle stages 19, and applies the adhesive 7 by the two dispensing nozzles 10. The nozzle moving mechanism 11 has control means 21 to control the movement of the first nozzle stage 19 and the second nozzle stage 20, and moves the dispensing nozzle 10 in a substantially horizontal direction in conjunction with up-and-down movement of the liquid crystal panel holding stage 4 and the protective panel holding stage 5, and thereby, without making the dispensing nozzle 10 in contact with the liquid crystal panel 2 and the protective panel 3, inserts or remove the dispensing nozzle 10 into or from the gap between both of the panels.

It is note that the number of the dispensing nozzles 10 with which the filling device 1 is equipped is not limited to two but may be one or not less than three. Also in these cases, each of the dispensing nozzles 10 is coupled with a corresponding one of the syringes 15 which are mounted on the first nozzle stages 19, and each of the first nozzle stages 19 is slidably supported on the second nozzle stage 20.

The adhesive 7 dispensed from the dispensing nozzle 10 is stored in the syringe 15 which is mounted on the first nozzle stage 19. The syringe 15 is connected with the pressing mechanism 13 by which the adhesive 7 stored is dispensed from the dispensing nozzle 10, and thereby control of dispensing and stopping dispensing of the adhesive 7 and control of dispensing pressure are performed. For the pressing mechanism 13, for example, a compressed dry air cylinder is used, and supply and supply interruption of the gas to the inside of the syringe 15 and supply pressure are controlled by using the control means 21, and the adhesive 7 is dispensed from the dispensing nozzle 10 by supplying gas to the inside of the syringe 15 at a predetermined pressure.

As the adhesive 7 dispensed from the dispensing nozzle 10, used is an ultraviolet-softening-type transparent elastic resin whose refractive index is controlled so as not to decrease viewability of the liquid crystal panel 2 by inhibiting light scattering, even if the adhesive 7 is filled between the liquid crystal panel 2 and the protective panel 3.

There is selected a viscosity such that the adhesive 7 is capable of being filled with adhering to the liquid crystal panel 2 and the protective panel 3 simultaneously, and of being maintained adhering to both of the panels 2 and 3 without flowing out of outer edges of both of the panels 2 and 3. Moreover, depending on such viscosity of the adhesive 7, a gap dimension between the liquid crystal panel 2 and the protective panel 3 is set to a range of 2.5 mm to 10 mm.

[1-2. Device Operation]

Next, with reference to FIG. 5 and FIG. 6., operation of the filling device 1 will be described. It is note that, in the present embodiment, explained will be a case where the adhesives 7 is filled between a gap of the liquid crystal panel 2 and the protective panel 3 which are rectangular, but the shape of the liquid crystal panel 2 and the protective panel 3 is not limited to a rectangle.

First, in the filling device 1, the liquid crystal panel holding stage 4 and the protective panel holding stage 5 are spaced apart by the actuator 6, and the liquid crystal panel 2 is stuck by suction to the liquid crystal panel holding stage 4 while the protective panel 3 is stuck by suction to the protective panel holding stage 5 (FIG. 5A, FIG. 6A, arranging and inserting step).

The liquid crystal panel holding stage 4 and the protective panel holding stage 5 are, for example, transparent stages, and a mark for position alignment to make the liquid crystal panel 2 and the protective panel 3 face each other is formed in each of the stages. By using the marks for position alignment, the filling device 1 automatically or manually performs a predetermined position alignment to make the liquid crystal panel 2 and the protective panel 3 face each other.

At this time, the first nozzle stage 19 is moved in the opposite direction of arrow X in FIG. 1 by the control means, and the dispensing nozzle 10 is removed from a gap between the liquid crystal panel 2 and the protective panel 3 toward the opposite direction of arrow X.

After the position alignment of the liquid crystal panel 2 and the protective panel 3 is completed, the control means slides the two first nozzle stages 19 in the direction of arrow X, whereby the filling device 1 inserts each of the dispensing nozzles 10 into the gap from sides 2a and 3a each of which is one side in the long side direction of each of the liquid crystal panel 2 and the protective panel 4 (FIG. 5B, FIG. 6B, arranging and inserting step). At this time, the dispensing nozzles 10 are inserted in advance at a height where the nozzles do not come into contact with both of the panels when the liquid crystal panel 2 and the protective panel 4 come closer together (FIG. 5B, arranging and inserting step). Moreover, the dispensing openings 17 of the dispensing nozzles 10 are positioned in the vicinity of sides 2b and 3b each of which is the other side in the long side direction of each of the liquid crystal panel 2 and the protective panel 4 (FIG. 6B, arranging and inserting step).

Then, by operating the actuator 6, the filling device 1 brings the liquid crystal panel holding stage 4 and the protective panel holding stage 5 closer, and holds the liquid crystal panel 2 and the protective panel 4 with a predetermined gap (FIG. 5C, arranging and inserting step).

Next, with moving the first and the second nozzle stages 19 and 20 by the control means, the filling device 1 dispenses the adhesive 7 from the dispensing nozzle 10, and draws a predetermined filling pattern in the gap of the liquid crystal panel 2 and the protective panel 3 (FIG. 5D, FIG. 6C, supplying step). At this time, with moving in the opposite direction of arrow X, the direction of arrow Y, and the opposite direction of arrow Y, the dispensing nozzle 10 dispenses the adhesive 7. Therefore, the dispensing opening 17 of the dispensing nozzle 10 does not enter the adhesive 7 which is filled in the gap between the liquid crystal panel 2 and the protective panel 4, whereby the adhesive 7 is prevented from adhering to the nozzle body. Thus, the filling device 1 can prevent the adhesive 7 from adhering to an unexpected portion by the adhesive 7 adhering to the dispensing nozzle 10.

As mentioned above, since the dispensing opening 17 is formed so as to direct upward, when beginning to dispense the adhesive 7, the dispensing nozzle 10 adheres the adhesive 7 to the protective panel 3 positioned above, then the adhesive 7 drops down to adhere to the liquid crystal panel 2 positioned below. Continuously, with moving in the opposite direction of arrow X, and in the direction of arrow Y and the opposite direction of arrow Y, the dispensing nozzle 10 dispenses the adhesive 7 to draw a predetermined drawing pattern P1 (FIG. 5E, FIG. 6D, supplying step). At this time, since the dispensing nozzle 10 applies the adhesive 7 with adhering the adhesive 7 to both of the liquid crystal panel 2 and the protective panel 3 simultaneously, air bubbles can be prevented from remaining in the adhesive 7.

As shown in FIG. 6D, the drawing pattern P1 of the adhesive 7 which is filled in the gap between the liquid crystal panel 2 and the protective panel 3 has a thick line portion 30 which is drawn in the central portion of the liquid crystal panel 2 and the protective panel 3 along the long side direction; and a thin line portion 31 which extends from both ends of the thick line portion 30 toward the four corners of each of the liquid crystal panel 2 and the protective panel 3. The thick line portion 30 is formed in the substantially central portion of the liquid crystal panel 2 and the protective panel 3 in the long side direction of the panels, while the thin line portion 31 is formed continuous from both ends of the thick line portion 30 in the long side direction toward the four corners of each of the liquid crystal panel 2 and the protective panel 3.

The drawing pattern P1 is formed by drawing a pattern symmetrical with respect to the thick line portion 30 in the short side direction, with one dispensing nozzle 10a and the other dispensing nozzle 10b of the filling device which is equipped with the two dispensing nozzles 10a and 10b. In other words, one dispensing nozzle 10a draws the thick line portion 30a and the thin line portion 31a in one side of the drawing pattern P1, while the other dispensing nozzle 10b draws the thick line portion 30b and the thin line portion 31b in the other side of the drawing pattern P1. The two dispensing nozzles 10a and 10b are synchronously moved by the nozzle moving mechanism 11, and, with moving back in the opposite direction of arrow X, each of the nozzles moves in the direction of arrow Y or the opposite direction of arrow Y so as to come closer together, thereby draws one thin line portion 31, and continuously moves back in the opposite direction of arrow X to draw the thick line portion 30, and, with further continuously moving back in the opposite direction of arrow X, the nozzles moves in the direction of arrow Y or the opposite direction of arrow Y to space apart together, thereby draws the other thin line portion 31.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Method for manufacturing display device, and transparent resin filler patent application.
###
monitor keywords

Browse recent Sony Chemical & Information Device Corporation patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Method for manufacturing display device, and transparent resin filler or other areas of interest.
###


Previous Patent Application:
Wax emulsion for use in building products
Next Patent Application:
Powder based balancing layer
Industry Class:
Stock material or miscellaneous articles
Thank you for viewing the Method for manufacturing display device, and transparent resin filler patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.85629 seconds


Other interesting Freshpatents.com categories:
Novartis , Pfizer , Philips , Procter & Gamble ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2784
Key IP Translations - Patent Translations

     SHARE
  
           

stats Patent Info
Application #
US 20120263964 A1
Publish Date
10/18/2012
Document #
13501808
File Date
10/12/2010
USPTO Class
428522
Other USPTO Classes
445 24
International Class
/
Drawings
10


Your Message Here(14K)



Follow us on Twitter
twitter icon@FreshPatents

Sony Chemical & Information Device Corporation

Browse recent Sony Chemical & Information Device Corporation patents

Stock Material Or Miscellaneous Articles   Composite (nonstructural Laminate)   Of Addition Polymer From Unsaturated Monomers   Ester, Halide Or Nitrile Of Addition Polymer