FreshPatents.com Logo
stats FreshPatents Stats
1 views for this patent on FreshPatents.com
2013: 1 views
Updated: November 16 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Multi-layer films and methods of forming same

last patentdownload pdfdownload imgimage previewnext patent


20120263924 patent thumbnailZoom

Multi-layer films and methods of forming same


A multi-layer film having a first film layer being at least partially formed from a polymer (A) and a polymer (B) and a second film layer being at least partially formed from the polymer (A), the polymer (B), a polymer (C), and optionally an opacifying agent, wherein at least one of the polymer (A), the polymer (B) and the polymer (C) is synthetic and is at least partially derived from a renewable resource such that the multi-layer film has a bio-based content of about 10% to about 100% using ASTM D6866-10, method B. Methods of forming multi-layer films are also provided.

Inventors: Paul Thomas Weisman, Eric Patton Weinberger, Pier-Lorenzo Caruso, Michael Remus
USPTO Applicaton #: #20120263924 - Class: 4281951 (USPTO) - 10/18/12 - Class 428 
Stock Material Or Miscellaneous Articles > Structurally Defined Web Or Sheet (e.g., Overall Dimension, Etc.) >Discontinuous Or Differential Coating, Impregnation Or Bond (e.g., Artwork, Printing, Retouched Photograph, Etc.)

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120263924, Multi-layer films and methods of forming same.

last patentpdficondownload pdfimage previewnext patent

FIELD OF THE INVENTION

The present disclosure generally relates to multi-layer films having a bio-based content of about 10% to about 100% using ASTM D6866-10, method B.

BACKGROUND OF THE INVENTION

Many products today require highly engineered components and yet, at the same time, these products are required to be limited use or disposable items. By limited use or disposable, it is meant that the product and/or component is used only a small number of times or possibly only once before being discarded. Examples of such products include, but are not limited to, personal care absorbent articles such as diapers, training pants, incontinence garments, sanitary napkins, bandages, wipes, tissue-towel paper products, and the like, as well as materials used for the packaging of products. These types of products can and do utilize films. When films are used in limited use and/or disposable products, the impetus for maximizing engineered properties while reducing cost is extremely high.

Most of the materials used in current commercial multi-layer films, especially those utilized in packaging applications, are derived from non-renewable resources, such as petroleum. Typically, the components of multi-layer films are made from polyolefins such as polyethylene and polypropylene. These polymers are derived from olefinic monomers such as ethylene and propylene which are obtained directly from petroleum via cracking and refining processes.

The price and availability of the petroleum feedstock ultimately has a significant impact on the price of multi-layer films which utilize materials derived from petroleum. As the worldwide price of petroleum escalates, so does the price of such multi-layer films.

Furthermore, many consumers display an aversion to purchasing products that are derived from petrochemicals. In some instances, consumers are hesitant to purchase products made from limited non-renewable resources such as petroleum and coal. Other consumers may have adverse perceptions about products derived from petrochemicals being “unnatural” or not environmentally friendly.

Accordingly, it would be desirable to provide a multi-layer film which comprises at least one polymer at least partially derived from renewable resources, where the at least one polymer has specific performance characteristics making the polymer particularly useful in the multi-layer film. Accordingly, it would be desirable to provide a multi-layer polymeric film which comprises lower basis weight reducing the use of petroleum and lowering costs, where the multi-layer polymeric film has improved performance characteristics to satisfy product and/or packaging needs

SUMMARY

OF THE INVENTION

In accordance with one embodiment, a multi-layer film comprises a first film layer and a second film layer, wherein the multi-layer film has a bio-based content of about 10% to about 100% using ASTM D6866-10, method B. The first film layer has an upper surface and a lower surface. The first film layer is at least partially found from a polymer (A) and a polymer (B). The first film layer comprises from about 75% to about 99% by weight of the polymer (A) and from about 1% to about 25% by weight of the polymer (B). The polymer (A) comprises at least one of a low density polyethylene (LDPE) and a linear low density polyethylene (LLDPE). The polymer (B) comprises a copolymer. The second film layer at least partially overlies one of the upper surface and the lower surface of the first film layer. The second film layer is at least partially formed from the polymer (A), the polymer (B), a polymer (C), and optionally an opacifying agent. The polymer (C) comprises a homo polypropylene (homo-PP). At least one of the polymer (A), the polymer (B) and the polymer (C) is synthetic and is at least partially derived from a renewable resource.

In accordance with another embodiment, a method of forming a multi-layer film, the method comprises processing a first film layer, wherein the first film layer has an upper surface and a lower surface; processing a second film layer and at least partially overlying the second film layer onto one of the upper surface and the lower surface of the first film layer to form a multi-layer film having a bio-based content of about 10% to about 100% using ASTM D6866-10, method B. The first film layer is at least partially formed from a polymer (A) and a polymer (B). The first film layer comprises from about 75% to about 99% by weight of the polymer (A) and from about 1% to about 25% by weight of the polymer (B). The polymer (A) comprises at least one of a low density polyethylene (LDPE) and a linear low density polyethylene (LLDPE). The polymer (B) comprises a copolymer. The second film layer is at least partially formed from the polymer (A), the polymer (B), a polymer (C), and optionally an opacifying agent. The polymer (C) comprises a homo polypropylene (homo-PP). At least one of the polymer (A), the polymer (B) and the polymer (C) is synthetic and is at least partially derived from a renewable resource.

In accordance with yet another embodiment, a multi-layer film comprises a first film layer, a second film layer, a third film layer and a bio-based content of about 10% to about 100% using ASTM D6866-10, method B. The first film layer has an upper surface and a lower surface. The second film layer at least partially overlies one of the upper surface and the lower surface of the first film layer. The third film layer at least partially overlies the second film layer such that the second film layer forms a core layer. The multi-layer film has a thickness from about 10 microns to about 200 microns, a tensile strength at 10% elongation from about 8 N/mm2 to about 24 N/mm2, and a seal strength from about 0.10 N/mm to about 2.0 N/mm.

In accordance with still another embodiment, a multi-layer film comprises from about 40% to about 90% by weight of the polymer (A), from about 5% to about 50% by weight of a polymer (B), from about 1% to about 20% by weight of a polymer (C), and a bio-based content of about 10% to about 100% using ASTM D6866-10, method B. The polymer (A) comprises at least one of a low density polyethylene (LDPE) and a linear low density polyethylene (LLDPE). The polymer (B) is a copolymer. The polymer (C) comprises a homo polypropylene (homo-PP).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a representative view of a multi-layer film having two layers; and

FIG. 2 is a representative view of a multi-layer film having three layers.

While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter that is regarded as the present invention, it is believed that the invention will be more fully understood from the following description taken in conjunction with the accompanying drawings. Some of the figures may have been simplified by the omission of selected elements for the purpose of more clearly showing other elements. Such omissions of elements in some figures are not necessarily indicative of the presence or absence of particular elements in any of the exemplary embodiments, except as may be explicitly delineated in the corresponding written description. None of the drawings are necessarily to scale.

DETAILED DESCRIPTION

OF THE INVENTION

I. Definitions

As used herein, the following terms shall have the meaning specified thereafter:

“Absorbent article” means devices that absorb and/or contain liquid. Wearable absorbent articles are absorbent articles placed against or in proximity to the body of the wearer to absorb and contain various exudates discharged from the body. Non-limiting examples of wearable absorbent articles include diapers, pant-like or pull-on diapers, training pants, sanitary napkins, tampons, panty liners, incontinence devices, and the like. Additional absorbent articles include wipes and cleaning products.

“Agricultural product” refers to a renewable resource resulting from the cultivation of land (e.g. a crop) or the husbandry of animals (including fish).

“Bio-based content” refers to the amount of carbon from a renewable resource in a material as a percent of the mass of the total organic carbon in the material, as determined by ASTM D6866-10, method B. Note that any carbon from inorganic sources such as calcium carbonate is not included in determining the bio-based content of the material.

“Communication” refers to a medium or means by which information, teachings, or messages are transmitted.

“Disposed” refers to an element being located in a particular place or position.

“Film” refers to a sheet-like material wherein the length and width of the material far exceed the thickness of the material.

“Monomeric compound” refers to an intermediate compound that may be polymerized to yield a polymer.

“Paper product”, as used herein, refers to any formed fibrous structure product, which may, but not necessarily, comprise cellulose fibers. In one embodiment, the paper products of the present disclosure include tissue-towel paper products.

“Petrochemical” refers to an organic compound derived from petroleum, natural gas, or coal.

“Petroleum” refers to crude oil and its components of paraffinic, cycloparaffinic, and aromatic hydrocarbons. Crude oil may be obtained from tar sands, bitumen fields, and oil shale.

“Polymer” refers to a macromolecule comprising repeat units where the macromolecule has a molecular weight of at least 1000 Daltons. The polymer may be a homopolymer, copolymer, terpoymer etc. The polymer may be produced via fee-radical, condensation, anionic, cationic, Ziegler-Natta, metallocene, or ring-opening mechanisms. The polymer may be linear, branched and/or crosslinked.

“Polyethylene” and “polypropylene” refer to polymers prepared from ethylene and propylene, respectively. The polymer may be a homopolymer, or may contain up to about 10 mol % of repeat units from a co-monomer.

“Related environmental message” refers to a message that conveys the benefits or advantages of the multi-layer film comprising a polymer derived from a renewable resource. Such benefits include being more environmentally friendly, having reduced petroleum dependence, being derived from renewable resources, and the like.

“Renewable resource” refers to a natural resource that can be replenished within a 100 year time frame. The resource may be replenished naturally, or via agricultural techniques. Renewable resources include plants, animals, fish, bacteria, fungi, and forestry products. They may be naturally occurring, hybrids, or genetically engineered organisms. Natural resources such as crude oil, coal, and peat which take longer than 100 years to form are not considered to be renewable resources.

“Synthetic polymer” refers to a polymer which is produced from at least one monomer by a chemical process. A synthetic polymer is not produced directly by a living organism.

“Tissue-towel paper product”, as used herein, refers to products comprising paper tissue or paper towel technology in general, including, but not limited to, conventional felt-pressed or conventional wet-pressed tissue paper, pattern densified tissue paper, starch substrates, and high bulk, uncompacted tissue paper. Non-limiting examples of tissue-towel paper products include toweling, facial tissue, bath tissue, table napkins, and the like.

II. Polymers Derived from Renewable Resources

A number of renewable resources contain polymers that are suitable for use in multi-layer films (i.e., the polymer is obtained from the renewable resource without intermediates). Suitable extraction and/or purification steps may be necessary, but no intermediate compound is required. Such polymers derived directly from renewable resources include cellulose (e.g. pulp fibers), starch, chitin, polypeptides, poly(lactic acid), polyhydroxyalkanoates, and the like. These polymers may be subsequently chemically modified to improve end use characteristics (e.g., conversion of cellulose to yield carboxycellulose or conversion of chitin to yield chitosan). However, in such cases, the resulting polymer is a structural analog of the starting polymer. Polymers derived directly from renewable resources (i.e., with no intermediate compounds) and their derivatives are known and these materials are not within the scope of the present disclosure.

Synthetic polymers of the present disclosure can be derived from a renewable resource via an indirect route involving one or more intermediate compounds. Suitable intermediate compounds derived from renewable resources include sugars. Suitable sugars include monosaccharides, disaccharides, trisaccharides, and oligosaccharides. Sugars such as sucrose, glucose, fructose, maltose may be readily produced from renewable resources such as sugar cane and sugar beets. Sugars may also be derived (e.g., via enzymatic cleavage) from other agricultural products such as starch or cellulose. For example, glucose may be prepared on a commercial scale by enzymatic hydrolysis of corn starch. While corn is a renewable resource in North America, other common agricultural crops may be used as the base starch for conversion into glucose. Wheat, buckwheat, arracaha, potato, barley, kudzu, cassava, sorghum, sweet potato, yam, arrowroot, sago, and other like starchy fruit, seeds, or tubers are may also be used in the preparation of glucose.

Other suitable intermediate compounds derived from renewable resources include monofunctional alcohols such as methanol or ethanol and polyfunctional alcohols such as glycerol. Ethanol may be derived from many of the same renewable resources as glucose. For example, cornstarch may be enzymatically hydrolyzed to yield glucose and/or other sugars. The resultant sugars can be converted into ethanol by fermentation. As with glucose production, corn is an ideal renewable resource in North America; however, other crops may be substituted. Methanol may be produced from fermentation of biomass. Glycerol is commonly derived via hydrolysis of triglycerides present in natural fats or oils, which may be obtained from renewable resources such as animals or plants.

Other intermediate compounds derived from renewable resources include organic acids (e.g., citric acid, lactic acid, alginic acid, amino acids etc.), aldehydes (e.g., acetaldehyde), and esters (e.g., cetyl palmitate, methyl stearate, methyl oleate, etc.).

Additional intermediate compounds such as methane and carbon monoxide may also be derived from renewable resources by fermentation and/or oxidation processes.

Intermediate compounds derived from renewable resources may be converted into polymers (e.g., glycerol to polyglycerol) or they may be converted into other intermediate compounds in a reaction pathway which ultimately leads to a polymer useful in a multi-layer film. An intermediate compound may be capable of producing more than one secondary intermediate compound. Similarly, a specific intermediate compound may be derived from a number of different precursors, depending upon the reaction pathways utilized.

Particularly desirable intermediates include olefins. Olefins such as ethylene and propylene may also be derived from renewable resources. For example, methanol derived from fermentation of biomass may be converted to ethylene and or propylene, which are both suitable monomeric compounds, as described in U.S. Pat. Nos. 4,296,266 and 4,083,889. Ethanol derived from fermentation of a renewable resource may be converted into the monomeric compound ethylene via dehydration as described in U.S. Pat. No. 4,423,270. Similarly, propanol or isopropanol derived from a renewable resource can be dehydrated to yield the monomeric compound of propylene as exemplified in U.S. Pat. No. 5,475,183. Propanol is a major constituent of fusel oil, a by-product formed from certain amino acids when potatoes or grains are fermented to produce ethanol.

Charcoal derived from biomass can be used to create syngas (i.e., CO+H2) from which hydrocarbons such as ethane and propane can be prepared (Fischer-Tropsch Process). Ethane and propane can be dehydrogenated to yield the monomeric compounds of ethylene and propylene.

Other sources of materials to form polymers derived from renewable resources include post-consumer recycled materials. Sources of synthetic post-consumer recycled materials can include plastic bottles, e.g., soda bottles, plastic films, plastic packaging materials, plastic bags and other similar materials which contain synthetic materials which can be recovered.

III. Exemplary Synthetic Polymers

Olefins derived from renewable resources may be polymerized to yield polyolefins. Ethylene and propylene derived from renewable resources may be polymerized under the appropriate conditions to prepare polyethylene and/or polypropylene having desired characteristics for use in multi-layer films. The polyethylene and/or polypropylene may be high density, medium density, low density, or linear-low density. Further, polypropylene can include homo-PP. Polyethylene and/or polypropylene may be produced via free-radical polymerization techniques, or by using Ziegler-Natta (Zn) catalysis or Metallocene catalysts. Examples of such bio-sourced polyethylenes and polypropylenes are described in U.S. Publication Nos. 2010/0069691, 2010/0069589, 2009/0326293, and 2008/0312485; PCT Application Nos. WO2010063947 and WO2009098267; and European Patent No. 1102569. Other olefins that can be derived from renewable resources include butadiene and isoprene. Examples of such olefins are described in U.S. Publication Nos. 2010/0216958 and 2010/0036173.

Such polyolefins being derived from renewable resources can also be reacted to form various copolymers, including for example random block copolymers, such as ethylene-propylene random block copolymers (e.g., Borpact™ BC918CF manufactured by Borealis). Such copolymers and methods of forming same are contemplated and described for example in European Patent No. 2121318.

In addition, the polyolefin derived from a renewable resource may be processed according to methods known in the art into a form suitable for the end use of the polymer. The polyolefin may comprise mixtures or blends with other polymers such as polyolefins derived from petrochemicals.

It should be recognized that any of the aforementioned synthetic polymers (e.g., copolymers) may be formed by using a combination of monomers derived from renewable resources and monomers derived from non-renewable (e.g., petroleum) resources. For example, the copolymer can comprise propylene repeat units derived from a renewable resource and isobutylene repeat units derived from a petroleum source.

IV. Multi-Layer Films Comprising the Synthetic Polymer Derived from Renewable Resources



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Multi-layer films and methods of forming same patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Multi-layer films and methods of forming same or other areas of interest.
###


Previous Patent Application:
Method of assembly of articles and intermediate created thereby
Next Patent Application:
Solvent borne polyurethane composition
Industry Class:
Stock material or miscellaneous articles
Thank you for viewing the Multi-layer films and methods of forming same patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.70753 seconds


Other interesting Freshpatents.com categories:
Novartis , Pfizer , Philips , Procter & Gamble ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2803
     SHARE
  
           


stats Patent Info
Application #
US 20120263924 A1
Publish Date
10/18/2012
Document #
13084630
File Date
04/12/2011
USPTO Class
4281951
Other USPTO Classes
428516, 26417319
International Class
/
Drawings
3



Follow us on Twitter
twitter icon@FreshPatents