Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next
Prev

Multi-layer films and methods of forming same




Title: Multi-layer films and methods of forming same.
Abstract: A multi-layer film having a first film layer being at least partially formed from a polymer (A) and a polymer (B) and a second film layer being at least partially formed from the polymer (A), the polymer (B), a polymer (C), and optionally an opacifying agent, wherein at least one of the polymer (A), the polymer (B) and the polymer (C) is synthetic and is at least partially derived from a renewable resource such that the multi-layer film has a bio-based content of about 10% to about 100% using ASTM D6866-10, method B. Methods of forming multi-layer films are also provided. ...


USPTO Applicaton #: #20120263924
Inventors: Paul Thomas Weisman, Eric Patton Weinberger, Pier-lorenzo Caruso, Michael Remus


The Patent Description & Claims data below is from USPTO Patent Application 20120263924, Multi-layer films and methods of forming same.

FIELD OF THE INVENTION

- Top of Page


The present disclosure generally relates to multi-layer films having a bio-based content of about 10% to about 100% using ASTM D6866-10, method B.

BACKGROUND

- Top of Page


OF THE INVENTION

Many products today require highly engineered components and yet, at the same time, these products are required to be limited use or disposable items. By limited use or disposable, it is meant that the product and/or component is used only a small number of times or possibly only once before being discarded. Examples of such products include, but are not limited to, personal care absorbent articles such as diapers, training pants, incontinence garments, sanitary napkins, bandages, wipes, tissue-towel paper products, and the like, as well as materials used for the packaging of products. These types of products can and do utilize films. When films are used in limited use and/or disposable products, the impetus for maximizing engineered properties while reducing cost is extremely high.

Most of the materials used in current commercial multi-layer films, especially those utilized in packaging applications, are derived from non-renewable resources, such as petroleum. Typically, the components of multi-layer films are made from polyolefins such as polyethylene and polypropylene. These polymers are derived from olefinic monomers such as ethylene and propylene which are obtained directly from petroleum via cracking and refining processes.

The price and availability of the petroleum feedstock ultimately has a significant impact on the price of multi-layer films which utilize materials derived from petroleum. As the worldwide price of petroleum escalates, so does the price of such multi-layer films.

Furthermore, many consumers display an aversion to purchasing products that are derived from petrochemicals. In some instances, consumers are hesitant to purchase products made from limited non-renewable resources such as petroleum and coal. Other consumers may have adverse perceptions about products derived from petrochemicals being “unnatural” or not environmentally friendly.

Accordingly, it would be desirable to provide a multi-layer film which comprises at least one polymer at least partially derived from renewable resources, where the at least one polymer has specific performance characteristics making the polymer particularly useful in the multi-layer film. Accordingly, it would be desirable to provide a multi-layer polymeric film which comprises lower basis weight reducing the use of petroleum and lowering costs, where the multi-layer polymeric film has improved performance characteristics to satisfy product and/or packaging needs

SUMMARY

- Top of Page


OF THE INVENTION

In accordance with one embodiment, a multi-layer film comprises a first film layer and a second film layer, wherein the multi-layer film has a bio-based content of about 10% to about 100% using ASTM D6866-10, method B. The first film layer has an upper surface and a lower surface. The first film layer is at least partially found from a polymer (A) and a polymer (B). The first film layer comprises from about 75% to about 99% by weight of the polymer (A) and from about 1% to about 25% by weight of the polymer (B). The polymer (A) comprises at least one of a low density polyethylene (LDPE) and a linear low density polyethylene (LLDPE). The polymer (B) comprises a copolymer. The second film layer at least partially overlies one of the upper surface and the lower surface of the first film layer. The second film layer is at least partially formed from the polymer (A), the polymer (B), a polymer (C), and optionally an opacifying agent. The polymer (C) comprises a homo polypropylene (homo-PP). At least one of the polymer (A), the polymer (B) and the polymer (C) is synthetic and is at least partially derived from a renewable resource.

In accordance with another embodiment, a method of forming a multi-layer film, the method comprises processing a first film layer, wherein the first film layer has an upper surface and a lower surface; processing a second film layer and at least partially overlying the second film layer onto one of the upper surface and the lower surface of the first film layer to form a multi-layer film having a bio-based content of about 10% to about 100% using ASTM D6866-10, method B. The first film layer is at least partially formed from a polymer (A) and a polymer (B). The first film layer comprises from about 75% to about 99% by weight of the polymer (A) and from about 1% to about 25% by weight of the polymer (B). The polymer (A) comprises at least one of a low density polyethylene (LDPE) and a linear low density polyethylene (LLDPE). The polymer (B) comprises a copolymer. The second film layer is at least partially formed from the polymer (A), the polymer (B), a polymer (C), and optionally an opacifying agent. The polymer (C) comprises a homo polypropylene (homo-PP). At least one of the polymer (A), the polymer (B) and the polymer (C) is synthetic and is at least partially derived from a renewable resource.

In accordance with yet another embodiment, a multi-layer film comprises a first film layer, a second film layer, a third film layer and a bio-based content of about 10% to about 100% using ASTM D6866-10, method B. The first film layer has an upper surface and a lower surface. The second film layer at least partially overlies one of the upper surface and the lower surface of the first film layer. The third film layer at least partially overlies the second film layer such that the second film layer forms a core layer. The multi-layer film has a thickness from about 10 microns to about 200 microns, a tensile strength at 10% elongation from about 8 N/mm2 to about 24 N/mm2, and a seal strength from about 0.10 N/mm to about 2.0 N/mm.

In accordance with still another embodiment, a multi-layer film comprises from about 40% to about 90% by weight of the polymer (A), from about 5% to about 50% by weight of a polymer (B), from about 1% to about 20% by weight of a polymer (C), and a bio-based content of about 10% to about 100% using ASTM D6866-10, method B. The polymer (A) comprises at least one of a low density polyethylene (LDPE) and a linear low density polyethylene (LLDPE). The polymer (B) is a copolymer. The polymer (C) comprises a homo polypropylene (homo-PP).

BRIEF DESCRIPTION OF THE DRAWINGS

- Top of Page


FIG. 1 is a representative view of a multi-layer film having two layers; and

FIG. 2 is a representative view of a multi-layer film having three layers.

While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter that is regarded as the present invention, it is believed that the invention will be more fully understood from the following description taken in conjunction with the accompanying drawings. Some of the figures may have been simplified by the omission of selected elements for the purpose of more clearly showing other elements. Such omissions of elements in some figures are not necessarily indicative of the presence or absence of particular elements in any of the exemplary embodiments, except as may be explicitly delineated in the corresponding written description. None of the drawings are necessarily to scale.

DETAILED DESCRIPTION

- Top of Page


OF THE INVENTION

I. Definitions

As used herein, the following terms shall have the meaning specified thereafter:

“Absorbent article” means devices that absorb and/or contain liquid. Wearable absorbent articles are absorbent articles placed against or in proximity to the body of the wearer to absorb and contain various exudates discharged from the body. Non-limiting examples of wearable absorbent articles include diapers, pant-like or pull-on diapers, training pants, sanitary napkins, tampons, panty liners, incontinence devices, and the like. Additional absorbent articles include wipes and cleaning products.

“Agricultural product” refers to a renewable resource resulting from the cultivation of land (e.g. a crop) or the husbandry of animals (including fish).

“Bio-based content” refers to the amount of carbon from a renewable resource in a material as a percent of the mass of the total organic carbon in the material, as determined by ASTM D6866-10, method B. Note that any carbon from inorganic sources such as calcium carbonate is not included in determining the bio-based content of the material.

“Communication” refers to a medium or means by which information, teachings, or messages are transmitted.

“Disposed” refers to an element being located in a particular place or position.

“Film” refers to a sheet-like material wherein the length and width of the material far exceed the thickness of the material.

“Monomeric compound” refers to an intermediate compound that may be polymerized to yield a polymer.

“Paper product”, as used herein, refers to any formed fibrous structure product, which may, but not necessarily, comprise cellulose fibers. In one embodiment, the paper products of the present disclosure include tissue-towel paper products.

“Petrochemical” refers to an organic compound derived from petroleum, natural gas, or coal.

“Petroleum” refers to crude oil and its components of paraffinic, cycloparaffinic, and aromatic hydrocarbons. Crude oil may be obtained from tar sands, bitumen fields, and oil shale.

“Polymer” refers to a macromolecule comprising repeat units where the macromolecule has a molecular weight of at least 1000 Daltons. The polymer may be a homopolymer, copolymer, terpoymer etc. The polymer may be produced via fee-radical, condensation, anionic, cationic, Ziegler-Natta, metallocene, or ring-opening mechanisms. The polymer may be linear, branched and/or crosslinked.

“Polyethylene” and “polypropylene” refer to polymers prepared from ethylene and propylene, respectively. The polymer may be a homopolymer, or may contain up to about 10 mol % of repeat units from a co-monomer.




← Previous       Next →
Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Multi-layer films and methods of forming same patent application.

###

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Multi-layer films and methods of forming same or other areas of interest.
###


Previous Patent Application:
Method of assembly of articles and intermediate created thereby
Next Patent Application:
Solvent borne polyurethane composition
Industry Class:
Stock material or miscellaneous articles
Thank you for viewing the Multi-layer films and methods of forming same patent info.
- - -

Results in 0.08918 seconds


Other interesting Freshpatents.com categories:
Novartis , Apple , Philips , Toyota ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2316

66.232.115.224
Browse patents:
Next
Prev

stats Patent Info
Application #
US 20120263924 A1
Publish Date
10/18/2012
Document #
File Date
12/31/1969
USPTO Class
Other USPTO Classes
International Class
/
Drawings
0




Follow us on Twitter
twitter icon@FreshPatents



Stock Material Or Miscellaneous Articles   Structurally Defined Web Or Sheet (e.g., Overall Dimension, Etc.)   Discontinuous Or Differential Coating, Impregnation Or Bond (e.g., Artwork, Printing, Retouched Photograph, Etc.)  

Browse patents:
Next
Prev
20121018|20120263924|multi-layer films and methods of forming same|A multi-layer film having a first film layer being at least partially formed from a polymer (A) and a polymer (B) and a second film layer being at least partially formed from the polymer (A), the polymer (B), a polymer (C), and optionally an opacifying agent, wherein at least one |
';