FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: August 12 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Nasal devices

last patentdownload pdfdownload imgimage previewnext patent


20120260915 patent thumbnailZoom

Nasal devices


A nasal delivery device and a method of delivering substance to a nasal airway of a subject can be used for mass treatment, especially mass vaccination. The delivery device can include an interface unit, as a replaceable unit, having at least one nosepiece unit for fitting to a respective nostril of a subject, a nozzle from which substance is in use delivered, and at least one delivery unit having a substance supply unit for delivering substance to the nozzle of the at least one nosepiece unit. The delivery device can also include an actuation unit for actuating the at least one delivery unit of the interface unit.
Related Terms: Nostril

Browse recent Optinose As patents - Oslo, NO
Inventor: Per Gisle Djupesland
USPTO Applicaton #: #20120260915 - Class: 12820312 (USPTO) - 10/18/12 - Class 128 
Surgery > Respiratory Method Or Device >Means For Mixing Treating Agent With Respiratory Gas

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120260915, Nasal devices.

last patentpdficondownload pdfimage previewnext patent

The present invention relates to a nasal delivery device for and a method of delivering a substance, in particular one of a liquid, as a suspension or solution, or a powder containing a medicament, especially systemic or topical pharmaceuticals, or a vaccine to the nasal airway of a subject, in particular for the mass treatment, especially vaccination, of subjects.

Referring to FIG. 1, the nasal airway 1 comprises the two nasal cavities separated by the nasal septum, which airway 1 includes numerous ostia, such as the paranasal sinus ostia 3 and the tubal ostia 5, and olfactory cells, and is lined by the nasal mucosa. The nasal airway 1 can communicate with the nasopharynx 7, the oral cavity 9 and the lower airway 11, with the nasal airway 1 being in selective communication with the anterior region of the nasopharynx 7 and the oral cavity 9 by opening and closing of the oropharyngeal velum 13. The velum 13, which is often referred to as the soft palate, is illustrated in solid line in the closed position, as achieved by providing a certain positive pressure in the oral cavity 9, such as achieved on exhalation through the oral cavity 9, and in dashed line in the open position.

There are many nasal conditions which require treatment. One such condition is nasal inflammation, specifically rhinitis, which can be allergic or non-allergic and is often associated with infection and prevents normal nasal function. By way of example, allergic and non-allergic inflammation of the nasal airway can typically effect between 10 and 20% of the population, with nasal congestion of the erectile tissues of the nasal concha, lacrimation, secretion of watery mucus, sneezing and itching being the most common symptoms. As will be understood, nasal congestion impedes nasal breathing and promotes oral breathing, leading to snoring and sleep disturbance. Other nasal conditions include nasal polyps which arise from the paranasal sinuses, hypertrophic adenoids, secretory otitis media, sinus disease and reduced olfaction.

In the treatment of certain nasal conditions, the topical administration of medicaments is preferable, particularly where the nasal mucosa is the prime pathological pathway, such as in treating or relieving nasal congestion. Medicaments that are commonly topically delivered include decongestants, anti-histamines, cromoglycates, steroids and antibiotics. At present, among the known anti-inflammatory pharmaceuticals, topical steroids have been shown to have an effect on nasal congestion. Topical decongestants have also been suggested for use in relieving nasal congestion. The treatment of hypertrophic adenoids and chronic secretory otitis media using topical decongestants, steroids and anti-microbial agents, although somewhat controversial, has also been proposed. Further, the topical administration of pharmaceuticals has been used to treat or at least relieve symptoms of inflammation in the anterior region of the nasopharynx, the paranasal sinuses and the auditory tubes.

Medicaments can also be systemically delivered through the nasal pathway, the nasal pathway offering a good administration route for the systemic delivery of pharmaceuticals, such as hormones, for example, oxytocin and calcitonin, and analgetics, such as anti-migraine compositions, as the high blood flow and large surface area of the nasal mucosa advantageously provides for rapid systemic uptake.

Nasal delivery also provides for the administration of medicaments requiring a rapid onset of action, for example, analgetics, anti-emetics, insulin, anti-epileptics, sedatives and hypnotica, and also other pharmaceuticals, for example, cardio-vascular drugs. It is envisaged that nasal administration will provide for a fast onset of action, at a rate similar to that of injection and at a rate much faster than that of oral administration. Indeed, for the treatment of many acute conditions, nasal administration is advantageous over oral administration, since gastric stasis can further slow the onset of action following oral administration.

Nasal delivery also further provides an effective delivery route for the administration of proteins and peptides as produced by modem biotechnological techniques. For such substances, the metabolism in the intestines and the first-pass-effect in the liver represent significant obstacles for reliable and cost-efficient delivery.

Furthermore, nasal delivery also further provides for the treatment of many common neurological diseases, such as Alzheimer\'s, Parkinson\'s, psychiatric diseases and intracerebral infections, where not possible using existing techniques. The nasal delivery technique of the present invention allows for delivery to the olfactory region, which region is located in the superior region of the nasal cavities and represents the only region where it is possible to circumvent the blood-to-brain barrier (BBB) and enable communication with the cerebrospinal fluid (CSF) and the brain.

Still furthermore, and a prime focus of the present invention is the nasal delivery of vaccines. The nasal delivery device of the present invention has been developed with the particular aim of providing a delivery device for the mass treatment, in particular the mass vaccination, of subjects.

For any kind of drug delivery, accurate and reliable dosing is essential, but it is of particular importance in relation to the administration of potent drugs which have a narrow therapeutic window, drugs with potentially serious adverse effects and drugs for the treatment of serious and life-threatening conditions. For some conditions, it is essential to individualize the dosage to the particular situation, for example, in the case of diabetes mellitus. For diabetes, and, indeed, for many other conditions, the dosage of the pharmaceutical is preferably based on actual real-time measurements. Currently, blood samples are most frequently used, but the analysis of molecules in the exhalation breath of subjects has been proposed as an alternative to blood analysis for several conditions. Breath analysis is currently used for the diagnosis of conditions such as helicobacter pylori infections which cause gastric ulcers.

WO-A-00/51672 discloses a delivery device for delivering a substance, in particular a medicament, in a bi-directional flow through the nasal cavities, that is, an air flow which passes into one nostril, around the posterior margin of the nasal septum and in the opposite direction out of the other nostril. This bi-directional air flow advantageously acts to stimulate the sensory nerves in the nasal mucosa, thereby conditioning the subject for the delivery and providing a more comfortable delivery situation.

It is an aim of the present invention to provide improved nasal delivery devices and nasal delivery methods for providing for the delivery of substance to subjects, in particular for the mass treatment, especially vaccination, of subjects.

In one aspect the present invention provides a nasal delivery device for delivering substance to a nasal airway of a subject, comprising: an interface unit, as a replaceable unit, including at least one nosepiece unit for fitting to a respective nostril of a subject and including a nozzle from which substance is in use delivered, and at least one delivery unit including a substance supply unit for delivering substance to the nozzle of the at least one nosepiece unit; and an actuation unit for actuating the at least one delivery unit of the interface unit.

Preferably, the interface unit comprises a disposable unit.

Preferably, the interface unit comprises a single integral unit.

Preferably, the interface unit is packaged in protective packaging.

In one embodiment the delivery device comprises: a plurality of interface units attached to a belt such as to allow for successive attachment of the interface units to the actuation unit.

Preferably, the actuation unit is configured successively to provide the interface units thereto through use of the belt as a guide.

Preferably, the substance supply unit comprises a substance pump unit for delivering substance, the substance pump unit including a chamber containing substance and a piston member which is movable in the chamber to deliver a flow of substance from the chamber.

In one embodiment the substance comprises a liquid.

In another embodiment the substance comprises a powder.

Preferably, the interface unit includes a mouthpiece unit including a mouthpiece into which a subject in use exhales.

In one embodiment the mouthpiece is fluidly connected to the at least one nosepiece unit such as to provide an air flow therethrough on exhalation by a subject into the mouthpiece.

In one embodiment the at least one delivery unit includes a gas supply unit for supplying a gas flow through the at least one nosepiece unit.

Preferably, the gas supply unit comprises a gas pump unit for delivering a gas flow, the gas pump unit comprising a cylinder and a piston member which is movable in the cylinder to deliver a gas flow through the at least one nosepiece unit.

In one embodiment the at least one delivery unit is configured such that the gas supply unit initiates supply of a gas flow prior to actuation of the substance supply unit to deliver substance.

In another embodiment the actuation unit includes a gas supply unit for supplying a gas flow through the at least one nosepiece unit.

In one embodiment the actuation unit is configured such that the gas supply unit initiates supply of a gas flow prior to actuation of the substance supply unit to deliver substance.

Preferably, the at least one delivery unit is actuated in response to exhalation by the subject.

In one embodiment the actuation unit includes a detection unit for detecting exhalation by a subject, at least one drive unit for actuating the at least one delivery unit, and a control unit for actuating the at least one drive unit in response to detecting exhalation by the subject.

In one embodiment the detection unit includes a pressure sensor for detecting a pressure in the mouthpiece, and the control unit is configured to actuate the at least one drive unit in response to detection of a predeterminable pressure by the detection unit.

In another embodiment the detection unit includes a flow sensor for detecting a flow rate through the mouthpiece, and the control unit is configured to actuate the at least one drive unit in response to detection of a predeterminable flow rate by the detection unit.

In another embodiment the actuation unit includes at least one drive unit for actuating the at least one delivery unit, and a trigger mechanism for actuating the at least one drive unit in response to exhalation by the subject.

In one embodiment the trigger mechanism is configured to actuate the at least one drive unit in response to generation of a predeterminable pressure in the mouthpiece.

In another embodiment the trigger mechanism is configured to actuate the at least one drive unit in response to detection of a predeterminable flow rate through the mouthpiece.

Preferably, the interface unit includes first and second nosepiece units for fitting to respective nostrils of the subject, and first and second delivery units, each including a substance supply unit for delivering substance through the respective nosepiece unit.

More preferably, the actuation unit is configured to actuate the first and second delivery units in succession such that substance is first delivered into one nasal cavity and subsequently into the other nasal cavity.

In another aspect the present invention provides a method of delivering substance to a nasal airway of a subject, comprising the steps of providing an interface unit, as a replaceable unit, to an actuation unit, the interface unit including at least one nosepiece unit for fitting to a respective nostril of a subject and including a nozzle from which substance is delivered, and at least one delivery unit including a substance supply unit for delivering substance to the nozzle of the at least one nosepiece unit, and the actuation unit being configured to actuate the at least one delivery unit of the interface unit; fitting the interface unit to a subject; and actuating the actuation unit to actuate the at least one delivery unit such as to deliver substance to a nasal airway of the subject.

Preferably, the interface unit comprises a disposable unit.

Preferably, the interface unit comprises a single integral unit.

Preferably, the interface unit is packaged in protective packaging, and, prior to the fitting step, the method further comprises the step of: opening the protective packaging.

In one embodiment a plurality of interface units are attached to a belt, and, in the interface unit providing step, a subsequent one of the interface units is provided to the actuation unit.

Preferably, in the interface unit providing step, the actuation unit advances the belt of interface units such as to provide a subsequent one of the interface units thereto.

Preferably, the substance supply unit comprises a substance pump unit for delivering substance, and the substance pump unit includes a chamber containing substance and a piston member which is moved in the chamber to deliver a flow of substance from the chamber.

In one embodiment the substance comprises a liquid.

In another embodiment the substance comprises a powder.

Preferably, the interface unit includes a mouthpiece unit including a mouthpiece, and, prior to the actuation unit actuating step, the method further comprises the step of: the subject exhaling into the mouthpiece.

In one embodiment the mouthpiece is fluidly connected to the at least one nosepiece unit such as to provide an air flow therethrough on exhalation by the subject into the mouthpiece.

In one embodiment the at least one delivery unit includes a gas supply unit for supplying a gas flow, and the method further comprises the step of: actuating the gas supply unit to supply a gas flow through the at least one nosepiece unit.

Preferably, the gas supply unit comprises a gas pump unit for delivering a gas flow, and the gas pump unit comprises a cylinder and a piston member which is moved in the cylinder to deliver a gas flow through the at least one nosepiece unit.

In one embodiment, for each delivery unit, the supply of a gas flow is initiated prior to the delivery of substance.

In another embodiment the actuation unit includes a gas supply unit for supplying a gas flow, and the method further comprises the step of actuating the gas supply unit to supply a gas flow through the at least one nosepiece unit.

In one embodiment, for each delivery unit, the supply of a gas flow is initiated prior to the delivery of substance.

Preferably, the at least one delivery unit is actuated in response to exhalation by the subject.

In one embodiment the actuation unit includes a detection unit for detecting exhalation by the subject and at least one drive unit for actuating the at least one delivery unit; and the actuation unit actuating step comprises the step of: actuating the at least one drive unit in response to the detection unit detecting exhalation by the subject.

In one embodiment the detection unit includes a pressure sensor for detecting a pressure in the mouthpiece, and the at least one drive unit is actuated in response to detection of a predeterminable pressure by the detection unit.

In another embodiment the detection unit includes a flow sensor for detecting a flow rate through the mouthpiece, and the at least one drive unit is actuated in response to detection of a predeterminable flow rate by the detection unit.

In another embodiment the actuation unit includes at least one drive unit for actuating the at least one delivery unit and a trigger mechanism for actuating the at least one drive unit in response to exhalation by the subject; and the actuation unit actuating step comprises the step of: actuating the trigger mechanism to actuate the at least one drive unit in response to exhalation by the subject.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Nasal devices patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Nasal devices or other areas of interest.
###


Previous Patent Application:
Method and apparatus for altering and or minimizing underwater noise
Next Patent Application:
Dry powder inhaler
Industry Class:
Surgery
Thank you for viewing the Nasal devices patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.75711 seconds


Other interesting Freshpatents.com categories:
Amazon , Microsoft , IBM , Boeing Facebook

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2--0.7445
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120260915 A1
Publish Date
10/18/2012
Document #
13244499
File Date
09/25/2011
USPTO Class
12820312
Other USPTO Classes
International Class
61M15/08
Drawings
16


Nostril


Follow us on Twitter
twitter icon@FreshPatents