FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: April 21 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

System and method for generating motion corrected tomographic images

last patentdownload pdfdownload imgimage previewnext patent


Title: System and method for generating motion corrected tomographic images.
Abstract: A method and related system for generating motion corrected tomographic images includes the steps of illuminating a region of interest (ROI) to be imaged being part of an unrestrained live subject and having at least three spaced apart optical markers thereon. Simultaneous images are acquired from a first and a second camera of the markers from different angles. Motion data comprising 3D position and orientation of the markers relative to an initial reference position is then calculated. Motion corrected tomographic data obtained from the ROI using the motion data is then obtained, where motion corrected tomographic images obtained therefrom. ...


Browse recent Ut-battelle, LLC patents - Oak Ridge, TN, US
Inventors: Shaun S. Gleason, James S. Goddard, JR.
USPTO Applicaton #: #20120106814 - Class: 382131 (USPTO) - 05/03/12 - Class 382 
Image Analysis > Applications >Dna Or Rna Pattern Reading >Tomography (e.g., Cat Scanner)

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120106814, System and method for generating motion corrected tomographic images.

last patentpdficondownload pdfimage previewnext patent

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

The United States Government has rights in this invention pursuant to Contract No. DE-AC05-00OR22725 between the United States Department of Energy and UT-Battelle, LLC.

CROSS-REFERENCE TO RELATED APPLICATIONS

Not applicable.

BACKGROUND OF THE INVENTION

Patient motion or motion of a living subject during imaging can cause image artifacts. The sources of motion can vary, including from restlessness, through respiration and heart beating, to small movements due to pressure changes over the cardiac cycle. In some cases motion artifacts degrade the diagnostic value of an image.

Optical methods including stereo methods for 3D measurements are known and are used to measure marker 3D position and orientation in medical imaging applications for motion correction. Generally, the patient is immobilized to limit motion during imaging. Existing measurement systems and related methods are not designed for fast motion measurement and correction.

Efficient methods for testing new drugs are very important to the pharmaceutical industry. The ability to screen test subjects for effects of a particular drug is an essential element in the process of product development. Small animals are essential for pharmaceutical testing, and mice in particular are useful for modeling human diseases. Efforts to scale down clinical medical imaging systems for smaller subjects have allowed medical researchers to obtain high-resolution computed tomography (CT) images of small animals for disease studies. Noninvasive imaging techniques, such as X-ray CT and positron emission tomography (PET), have been developed for small animal medical imaging applications. For example, small animal imaging is used in cancer research to monitor tumor growth and regression in mice.

While anatomical models are useful for studying drug effectiveness, it is very often desirable to screen test subjects for physiological effects of a drug. PET and single photon emission computed tomography (SPECT) are among current techniques used for functional medical imaging. Because test subjects must be kept alive during the screening process in order to monitor functional processes, either the animal must remain motionless for the duration of the scan or its movements must be measured and recorded with a high degree of precision and accuracy. Although sedation and physical restraint can be used to impede animal motion for this type of medical scan, both methods have the potential to alter the neurological and physiological processes that are being studied. Unrestrained awake animals tend to sometimes move rapidly. Unfortunately, as noted above, existing measurement systems are not designed for fast motion measurement and correction.

BRIEF DESCRIPTION OF THE DRAWINGS

A fuller understanding of the present invention and the features and benefits thereof will be obtained upon review of the following detailed description together with the accompanying drawings, in which:

FIG. 1 is a schematic diagram of an exemplary motion correcting single photon emission computed tomography (SPECT) imaging system 100.

FIG. 2 shows a communication flow diagram for system components for system 100 shown in FIG. 1.

FIG. 3(a) shows a scanned image of a mouse fitted with three optical retro reflective markers on its head in a burrow, while FIG. 3(b) shows a scanned image of the mouse with the retro reflectors from each camera and with tracking enabled. The markers are outlined and numbered showing that they have been segmented and that correspondence has been determined. In this depiction, the lines between the markers indicates that successful model fitting has been done and that a full 3D transformation has been calculated between the camera reference frame and the model reference frame.

SUMMARY

OF THE INVENTION

A method and related system for generating motion corrected tomographic images includes the steps of illuminating a region of interest (ROI) to be imaged being part of an unrestrained live subject and having at least three spaced apart optical markers thereon. Simultaneous images are acquired from a first and a second camera of the markers from different angles. Motion data comprising 3D position and orientation of the markers relative to an initial reference position is then calculated. Motion corrected tomographic data obtained from the ROI using the motion data is then obtained, where motion corrected tomographic images obtained therefrom. In one embodiment, the ROI is provided by an unrestrained awake animal. The unrestrained animal can be disposed in an confinement volume which is optically transparent to a wavelength of radiation used for the illuminating.

The tomographic images can be single photon emission computed tomography (SPECT) images. The markers are preferably retro-reflective and the illuminating is preferably aligned to be coaxial with an optical axis of the first and the second camera.

The illuminating can be strobed illuminating. In this embodiment, acquisition of said simultaneous images is synchronized to a strobe pulse to cause the simultaneous acquisition during an illumination period and the calculating motion data step can comprise processing the simultaneous images using a combination of segmentation, object features extraction and filtering.

A motion correcting tomography-based imaging system comprises a region of interest (ROI) to be imaged having at least three spaced apart optical markers thereon, at least one radiation detector for collecting radiation data from emitted from a radioactive isotope in said ROI or radiation data provided by the ROI attenuating radiation provided by an external radiation source, a first processor communicably connected to the radiation detector, and structure for rotating said ROI relative to the radiation detector. The motion correcting portion of the system comprises an at least one illumination source for illuminating the ROI, a first and a second camera for acquiring simultaneous images from the markers from different angles, and at least a second processor communicably connected to the first processor for calculating motion data comprising 3D position and orientation of the markers relative to an initial reference position, and motion correcting the radiation data, wherein motion corrected tomographic images are obtained from the motion correcting radiation data.

The tomography system can be a single photon emission computed tomography (SPECT) system. In a preferred embodiment, the markers are retro-reflective and the illuminating is aligned to be coaxial with an optical axis of the first and the second camera. The illuminating can be strobed illuminating, wherein acquisition of the simultaneous images is synchronized to a strobe pulse to cause the simultaneous acquisition during an illumination period. The at least one radiation detector preferably comprises a first and a second detector.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this System and method for generating motion corrected tomographic images patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like System and method for generating motion corrected tomographic images or other areas of interest.
###


Previous Patent Application:
Denoising method and system for preserving clinically significant structures in reconstructed images using adaptively weighted anisotropic diffusion filter
Next Patent Application:
System and method for material decomposition optimization in image domain
Industry Class:
Image analysis
Thank you for viewing the System and method for generating motion corrected tomographic images patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.59135 seconds


Other interesting Freshpatents.com categories:
Electronics: Semiconductor Audio Illumination Connectors Crypto ,  -g2-0.2372
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120106814 A1
Publish Date
05/03/2012
Document #
11241359
File Date
09/30/2005
USPTO Class
382131
Other USPTO Classes
International Class
06K9/00
Drawings
3



Follow us on Twitter
twitter icon@FreshPatents