FreshPatents.com Logo
stats FreshPatents Stats
7 views for this patent on FreshPatents.com
2014: 2 views
2013: 1 views
2012: 4 views
Updated: April 14 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Pegylated l-asparaginase

last patentdownload pdfdownload imgimage previewnext patent


Title: Pegylated l-asparaginase.
Abstract: Disclosed is a conjugate of a protein having substantial L-asparagine aminohydrolase activity and polyethylene glycol. In particular, the polyethylene glycol has a molecular weight less than or equal to about 5000 Da and the protein is an L-asparaginase from Erwinia. The conjugate of the invention has shown superior properties such as maintenance of a high level of in vitro activity and an unexpected increase in half-life in vivo. Also disclosed are methods of producing the conjugate and use of the conjugate in therapy. In particular, a method is disclosed for use of the conjugate in the treatment of cancer, particularly Acute Lymphoblastic Leukemia (ALL). More specifically, a method is disclosed for use of the conjugate as a second line therapy for patients who have developed hypersensitivity or have had a disease relapse after treatment with other L-asparaginase preparations. ...


Inventor: Thierry Abribat
USPTO Applicaton #: #20120100121 - Class: 424 943 (USPTO) - 04/26/12 - Class 424 
Drug, Bio-affecting And Body Treating Compositions > Enzyme Or Coenzyme Containing >Stabilized Enzymes Or Enzymes Complexed With Nonenzyme (e.g., Liposomes, Etc.)

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120100121, Pegylated l-asparaginase.

last patentpdficondownload pdfimage previewnext patent

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention concerns a conjugate of a protein having substantial L-asparagine aminohydrolase activity and polyethylene glycol, particularly wherein the polyethylene glycol has a molecular weight less than or equal to about 5000 Da, particularly a conjugate wherein the protein is a L-asparaginase from Erwinia, and its use in therapy.

2. Background

Proteins with L-asparagine aminohydrolase activity, commonly known as L-asparaginases, have successfully been used for the treatment of Acute Lymphoblastic Leukemia (ALL) in children for many years. ALL is the most common childhood malignancy (Avramis and Panosyan, Clin. Pharmacokinet. (2005) 44:367-393).

L-asparaginase has also been used to treat Hodgkin\'s disease, acute myelocytic leukemia, acute myelomonocytic leukemia, chronic lymphocytic leukemia, lymphosarcoma, reticulosarcoma, and melanosarcoma (Kotzia and Labrou, J. Biotechnol. 127 (2007) 657-669). The anti-tumor activity of L-asparaginase is believed to be due to the inability or reduced ability of certain malignant cells to synthesize L-asparagine (Kotzia and Labrou, J. Biotechnol. 127 (2007) 657-669). These malignant cells rely on an extracellular supply of L-asparagine. However, the L-asparaginase enzyme catalyzes the hydrolysis of L-asparagine to aspartic acid and ammonia, thereby depleting circulating pools of L-asparagine and killing tumor cells which cannot perform protein synthesis without L-asparagine (Kotzia and Labrou, J. Biotechnol. 127 (2007) 657-669).

L-asparaginase from E. coli was the first enzyme drug used in ALL therapy and has been marketed as Elspar® in the USA or as Kidrolase® and L-asparaginase Medac® in Europe. L-asparaginases have also been isolated from other microorganisms, e.g., an L-asparaginase protein from Erwinia chrysanthemi, named crisantaspase, that has been marketed as Erwinase® (Wriston Jr., J. C. (1985) “L-asparaginase” Meth. Enzymol. 113, 608-618; Goward, C. R. et al. (1992) “Rapid large scale preparation of recombinant Erwinia chrysanthemi L-asparaginase”, Bioseparation 2, 335-341). L-asparaginases from other species of Erwinia have also been identified, including, for example, Erwinia chrysanthemi 3937 (Genbank Accession #AAS67028), Erwinia chrysanthemi NCPPB 1125 (Genbank Accession #CAA31239), Erwinia carotovora (Genbank Accession #AAP92666), and Erwinia carotovora subsp. Astroseptica (Genbank Accession #AAS67027). These Erwinia chrysanthemi L-asparaginases have about 91-98% amino acid sequence identity with each other, while the Erwinia carotovora L-asparaginases have approximately 75-77% amino acid sequence identity with the Erwinia chrysanthemi L-asparaginases (Kotzia and Labrou, J. Biotechnol. 127 (2007) 657-669).

L-asparaginases of bacterial origin have a high immunogenic and antigenic potential and frequently provoke adverse reactions ranging from mild allergic reaction to anaphylactic shock in sensitized patients (Wang, B. et al. (2003) “Evaluation of immunologic cross reaction of anti-asparaginase antibodies in acute lymphoblastic leukemia (ALL and lymphoma patients), Leukemia 17, 1583-1588). E. coli L-asparaginase is particularly immunogenic, with reports of the presence of anti-asparaginase antibodies to E. coli L-asparaginase following i.v. or i.m. administration reaching as high as 78% in adults and 70% in children (Wang, B. et al. (2003) Leukemia 17, 1583-1588).

L-asparaginases from Escherichia coli and Erwinia chrysanthemi differ in their pharmacokinetic properties and have distinct immunogenic profiles, respectively (Klug Albertsen, B. et al. (2001) “Comparison of intramuscular therapy with Erwinia asparaginase and asparaginase Medac: pharmacokinetics. pharmacodynamics, formation of antibodies and influence on the coagulation system” Brit. J. Haematol. 115, 983-990). Furthermore, it has been shown that antibodies that developed after a treatment with L-asparaginase from E. coli do not cross react with L-Asparaginase from Erwinia (Wang, B. et al., Leukemia 17 (2003) 1583-1588). Thus, L-asparaginase from Erwinia (crisantaspase) has been used as a second line treatment of ALL in patients that react to E. coli L-asparaginase (Duval, M. et al. (2002) “Comparison of Escherichia coli-asparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: results of a randomized European Organisation for Research and Treatment of Cancer, Children\'s Leukemia Group phase 3 trial” Blood 15, 2734-2739; Avramis and Panosyan, Clin. Pharmacokinet. (2005) 44:367-393).

In another attempt to reduce immunogenicity associated with administration of microbial L-asparaginases, an E. coli L-asparaginase has been developed that is modified with methoxy-polyethyleneglycol (mPEG). This method is commonly known as “PEGylation” and has been shown to alter the immunological properties of proteins (Abuchowski, A. et al. (1977) “Alteration of Immunological Properties of Bovine Serum Albumin by Covalent Attachment of Polyethylene Glycol,” J. Biol. Chem. 252 (11), 3578-3581). This so-called mPEG-L-asparaginase, or pegaspargase, marketed as Oncaspar® (Enzon Inc., USA), was first approved in the U.S. for second line treatment of ALL in 1994, and has been approved for first-line therapy of ALL in children and adults since 2006. Oncaspar® has a prolonged in vivo half-life and a reduced immunogenicity/antigenicity.

Oncaspar® is E. coli L-asparaginase that has been modified at multiple lysine residues using 5 kDa mPEG-succinimidyl succinate (SS-PEG) (U.S. Pat. No. 4,179,337). SS-PEG is a PEG reagent of the first generation that contains an insatiable ester linkage that is sensitive to hydrolysis by enzymes or at slightly alkaline pH values (U.S. Pat. No. 4,670,417; Makromol. Chem. 1986, 187, 1131-1144). These properties decrease both in vitro and in vivo stability and can impair drug safety.

Furthermore, it has been demonstrated that antibodies developed against L-asparaginase from E. coli will cross react with Oncaspar® (Wang, B. et al. (2003) “Evaluation of immunologic cross-reaction of anti-asparaginase antibodies in acute lymphoblastic leukemia (ALL and lymphoma patients),” Leukemia 17, 1583-1588). Even though these antibodies were not neutralizing, this finding clearly demonstrated the high potential for cross-hypersensitivity or cross-inactivation in vivo. Indeed, in one report 30-41% of children who received pegaspargase had an allergic reaction (Wang, B. et al. (2003) Leukemia 17, 1583-1588).

In addition to outward allergic reactions, the problem of “silent hypersensitivity” was recently reported, whereby patients develop anti-asparaginase antibodies without showing any clinical evidence of a hypersensitivity reaction (Wang, B. et al. (2003) Leukemia 17, 1583-1588). This reaction can result in the formation of neutralizing antibodies to E. coli L-asparaginase and pegaspargase; however, these patients are not switched to Erwinia L-asparaginase because there are not outward signs of hypersensitivity, and therefore they receive a shorter duration of effective treatment (Holcenberg, J., J. Pediatr. Hematol. Oncol. 26 (2004) 273-274).

Erwinia chrysanthemi L-asparaginase treatment is often used in the event of hypersensitivity to E. coli-derived L-asparaginases. However, it has been observed that as many as 30-50% of patients receiving Erwinia L-asparaginase are antibody-positive (Avramis and Panosyan, Clin. Pharmacokinet. (2005) 44:367-393). Moreover, because Erwinia chrysanthemi L-asparaginase has a significantly shorter elimination half-life than the E. coli L-asparaginases, it must be administered more frequently (Avramis and Panosyan, Clin. Pharmacokinet. (2005) 44:367-393). In a study by Avramis et al., Erwinia asparaginase was associated with inferior pharmacokinetic profiles (Avramis et al., J. Pediatr. Hematol. Oncol. 29 (2007) 239-247). E. coli L-asparaginase and pegaspargase therefore have been the preferred first-line therapies for ALL over Erwinia L-asparaginase.

Numerous biopharmaceuticals have successfully been PEGylated and marketed for many years. In order to couple PEG to a protein, the PEG has to be activated at its OH terminus. The activation group is chosen based on the available reactive group on the protein that will be PEGylated. In the case of proteins, the most important amino acids are lysine, cysteine, glutamic acid, aspartic acid, C-terminal carboxylic acid and the N-terminal amino group. In view of the wide range of reactive groups in a protein nearly the entire peptide chemistry has been applied to activate the PEG moiety. Examples for this activated PEG-reagents are activated carbonates, e.g., p-nitrophenyl carbonate, succinimidyl carbonate; active esters, e.g., succinimidyl ester; and for site specific coupling aldehydes and maleimides have been developed (Harris, M., Adv. Drug Del. Rev. 54 (2002), 459-476). The availability of various chemical methods for PEG modification shows that each new development of a PEGylated protein will be a case by case study. In addition to the chemistry the molecular weight of the PEG that is attached to the protein has a strong impact on the pharmaceutical properties of the PEGylated protein. In most cases it is expected that, the higher the molecular weight of the PEG, the better the improvement of the pharmaceutical properties (Sherman, M. R., Adv. Drug Del. Rev. 60 (2008), 59-68; Holtsberg, F. W., Journal of Controlled Release 80 (2002), 259-271). For example, Holtsberg et al. found that, when PEG was conjugated to arginine deaminase, another amino acid degrading enzyme isolated from a microbial source, pharmacokinetic and pharmacodynamic function of the enzyme increased as the size of the PEG attachment increased from a molecular weight of 5000 Da to 20,000 Da (Holtsberg, F. W., Journal of Controlled Release 80 (2002), 259-271).

However, in many cases, PEGylated biopharmaceuticals show significantly reduced activity compared to the unmodified biopharmaceutical (Fishburn, C. S. (2008) Review “The Pharmacology of PEGylation: Balancing PD with PK to Generate Novel Therapeutics” J. Pharm. Sci., 1-17). In the case of L-asparaginase from Erwinia carotovora, it has been observed that PEGylation reduced its in vitro activity to approximately 57% (Kuchumova, A. V. et al. (2007) “Modification of Recombinant asparaginase from Erwinia carotovora with Polyethylene Glycol 5000” Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 1, 230-232). The L-asparaginase from Erwinia carotovora has only about 75% homology to the Erwinia chrysanthemi L-asparaginase (crisantaspase). For Oncaspar® it is also known that its in vitro activity is approximately 50% compared to the unmodified E. coli L-asparaginase.

The currently available L-asparaginase preparations do not provide alternative or complementary therapies—particularly therapies to treat ALL—that are characterized by high catalytic activity and significantly improved pharmacological and pharmacokinetic properties, as well as reduced immunogenicity.

BRIEF

SUMMARY

OF THE INVENTION

The present invention is directed to a conjugate of a protein having substantial L-asparagine aminohydrolase activity and polyethylene glycol, wherein the polyethylene glycol has a molecular weight less than or equal to about 5000 Da, particularly a conjugate where the protein is a L-asparaginase from Erwinia. In one embodiment, the conjugate comprises an L-asparaginase from Erwinia having at least 80% identity to the amino acid of SEQ ID NO:1 and polyethylene glycol (PEG), wherein the PEG has a molecular weight less than or equal to about 5000 Da. In one embodiment, the L-asparaginase has at least about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to the amino acid of SEQ ID NO:1. In some embodiments, the PEG has a molecular weight of about 5000 Da, 4000, Da, 3000 Da, 2500 Da, or 2000 Da. In one embodiment, the conjugate has an in vitro activity of at least 60%, 65%, 70%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% as compared to the L-asparaginase when not conjugated to PEG. In another embodiment, the conjugate has an L-asparagine depletion activity at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 times more potent than the L-asparaginase when not conjugated to PEG. In another embodiment, the conjugate depletes plasma L-asparagine levels to an undetectable level for at least about 12, 24, 48, 96, 108, or 120 hours.

In one embodiment, the conjugate has a longer in vivo circulating half life compared to the L-asparaginase when not conjugated to PEG. In a specific embodiment, the conjugate has a longer t1/2 than pegaspargase (i.e., PEG-conjugated L-asparaginase from E. coli) administered at an equivalent protein dose (e.g., measured in μg/kg). In a more specific embodiment, the conjugate has a t1/2 of at least about 58 to about 65 hours at a dose of about 50 μg/kg on a protein content basis, and a t1/2 of at least about 34 to about 40 hours at a dose of about 10 μg/kg on a protein content basis, following iv administration in mice. In another specific embodiment, the conjugate has a t1/2 of at least about 100 to about 200 hours at a dose ranging from about 10,000 to about 15,000 IU/m2 (about 20-30 mg protein/m2). In one embodiment, the conjugate has a greater area under the curve (AUC) compared to the L-asparaginase when not conjugated to PEG. In a specific embodiment, the conjugate has a mean AUC that is at least about 3 times greater than pegaspargase at an equivalent protein dose.

In one embodiment, the PEG is covalently linked to one or more amino groups (wherein “amino groups” includes lysine residues and/or the N-terminus) of the L-asparaginase. In a more specific embodiment, the PEG is covalently linked to the one or more amino groups by an amide bond. In another specific embodiment, the PEG is covalently linked to at least from about 40% to about 100% of the accessible amino groups (e.g., lysine residues and/or the N-terminus of the protein) or at least from about 40% to about 90% of total amino groups (e.g., lysine residues and/or the N-terminus of the protein). In one embodiment, the conjugate has the formula:

Asp-[NH—CO—(CH2)x-CO—NH-PEG]n

wherein Asp is the L-asparaginase, NH is one or more of the NH groups of the lysine residues and/or the N-terminus of the Asp, PEG is a polyethylene glycol moiety, n is a number that represents at least about 40% to about 100% of the accessible amino groups (e.g., lysine residues and/or the N-terminus) in the Asp, and x is an integer ranging from about 1 to about 8, more specifically, from about 2 to about 5. In a specific embodiment, the PEG is monomethoxy-polyethylene glycol (mPEG).

In another aspect, the invention is directed to a method of making a conjugate comprising combining an amount of PEG with an amount of the L-asparaginase in a buffered solution for a time period sufficient to covalently link the PEG to the L-asparaginase.

In another aspect, the invention is directed to a pharmaceutical composition comprising the conjugate of the invention.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Pegylated l-asparaginase patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Pegylated l-asparaginase or other areas of interest.
###


Previous Patent Application:
Performance enhancing composition and method of delivering nutrients
Next Patent Application:
Combination therapy
Industry Class:
Drug, bio-affecting and body treating compositions
Thank you for viewing the Pegylated l-asparaginase patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.64602 seconds


Other interesting Freshpatents.com categories:
Amazon , Microsoft , IBM , Boeing Facebook -g2-0.2328
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120100121 A1
Publish Date
04/26/2012
Document #
13382276
File Date
07/06/2010
USPTO Class
424 943
Other USPTO Classes
435188
International Class
/
Drawings
15


Acute Lymphoblastic Leukemia
Hypersensitivity
Relapse


Follow us on Twitter
twitter icon@FreshPatents