Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next
Prev

Methods for detection of depressive disorders




Title: Methods for detection of depressive disorders.
Abstract: The present invention relates generally to the detection or diagnosis of depressive disorders, and provides methods and compositions useful for this purpose. In particular, the present invention provides biomarkers for the detection or diagnosis of major depressive disorder, and methods of use thereof. ...


USPTO Applicaton #: #20120094859
Inventors: Eva Redei, Brian Andrus


The Patent Description & Claims data below is from USPTO Patent Application 20120094859, Methods for detection of depressive disorders.

CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/394,449, filed Oct. 19, 2010, which is incorporated by reference in its entirety.

FIELD OF THE INVENTION

- Top of Page


The present invention relates generally to the detection or diagnosis of depressive disorders, and provides methods and compositions useful for this purpose. In particular, the present invention provides biomarkers for the detection or diagnosis of major depressive disorder, and methods of use thereof.

BACKGROUND

- Top of Page


OF THE INVENTION

Depressive disorders (e.g. Major depressive disorder (MDD)) are the leading cause of disability in the United States when measured as total time lost to disability, affecting more than 18 million people annually in the USA alone. Depressive disorders, the most common of affective illnesses, include a large set of illnesses ranging from seasonal depressive disorder to chronic depression. There are currently no known available biological markers for depression; diagnosis is made by physicians or psychologists based on structured interviews with the patients. Depressive disorders are among only a few major illnesses that remain reliant upon subjective diagnoses. This contributes to under recognition, trivialization and stigmatization of these disabling illnesses.

Pre-adult onset of MDD, which occurs most often during adolescence, occurs in approximately 40% of patients with MDD. This sub-group has a poor prognosis, with high levels of adult affective disorder, substance use disorders, physical illness, and social maladjustment. This dysfunction includes problematic parenting behaviors in both women and men, with negative consequences for offspring. Thus, the public health benefit of treating adolescent MDD affects not only teens, but subsequent generations as well. In addition, the disorder is the major psychiatric risk factor for teen suicide, with rates in this group being more than 20 times greater than in the general adolescent population.

Treatments for adolescent MDD exist but response rates vary, medication side effects are unpredictable, and adolescents have lower response rates than adults. Exacerbating the problem is that 40% of youths with clinically significant levels of depression never come to the attention of a medical or mental health care provider. Many of these issues with treatment and identification are due, at least in part, to a diagnostic process that relies primarily on patient self-report. While symptom report is critical to the diagnostic process, it is subject to recall bias, the vagaries of culture-, gender-, education-influenced interpretations by the patients, and in the case of parent-report, the parent's own psychological state. Symptoms and signs, therefore, do not always discriminate between youths with and without MDD. The current diagnostic practice results in some youths who need treatment but are not getting it, and some who get treatment but may not need it. MDD treatments (e.g. antidepressants and psychotherapy) carry risks of adverse effects, and the economic cost of inappropriate treatment is high, as the effects of antidepressant medication on the developing adolescent brain are not completely understood. Conversely, the individual, societal, and economic costs of not treating a youth who truly does have MDD can also be quite high, and include suicide, hospitalization, and/or protracted impairment. The costs of misclassification for research studies are also significant in wasted dollars, time, and incorrect results.

SUMMARY

- Top of Page


OF THE INVENTION

In some embodiments, the present invention provides a method for assessing depressive disorders in a subject, comprising: (a) providing a sample from a subject; (b) characterizing the levels of gene expression of one or more genes selected from the genes listed in Tables 1 and 4; and (c) identifying risk of depressive disorders in the subject based on the levels of gene expression and/or protein expression. In some embodiments, the subject is a human subject. In some embodiments, the human subject is suspected of suffering from depressive disorder.

In some embodiments, the subject is suspected of suffering from MDD. In some embodiments, assessing depressive disorders comprises: detecting, quantifying, diagnosing, indicating, or determining the presence, risk, severity, and/or type of depressive disorder.

In some embodiments, the subject is an adolescent. In some embodiments, the genes comprise one or more of the genes listed in Table 1. In some embodiments, the genes comprise a variant of one or more of the genes listed in Table 1 (e.g. >50% identity, >60% identity, >70% identity, >80% identity, >90% identity, >95% identity, >98% identity, >99% identity). In some embodiments, the genes comprise one or more of the genes listed in Table 4. In some embodiments, the genes comprise a variant of one or more of the genes listed in Table 4 (e.g. >50% identity, >60% identity, >70% identity, >80% identity, >90% identity, >95% identity, >98% identity, >99% identity). In some embodiments, the genes comprise one or more of ADCY3, ATP2C1, CD59, FAM46A, FMR1, GNAQ, IGSF4A/CADM1, MAF, MARCKS, NAGA, PTPRM, TLR7, and ZNF291/SCAPER.

In some embodiments, the subject is an adult. In some embodiments, the genes comprise one or more of the genes listed in Table 1. In some embodiments, the genes comprise one or more of FAM46A, MARCKS, ATP2C1, NAGA, TLR7, ADCY3, ASAH1, CD59, FOS, IGSF4A/CADM1, ZNF291/SCAPER, ATP11C, MAF, GNAQ, FMR1, and PTPRM. In some embodiments, the genes comprise one or more of FAM46A, CD59, IGSF4A/CADM1, NAGA and TLR7.

In some embodiments, characterizing the levels of gene expression comprises detecting the amount of mRNA. In some embodiments, detecting the amount of mRNA comprises exposing a sample to nucleic acid probes complementary to the mRNA. In some embodiments, nucleic acid probes are covalently linked to a solid surface. In some embodiments, detecting the amount of mRNA in a sample comprises use of a detection technique selected from the group consisting of microarray analysis, reverse transcriptase PCR, quantitative reverse transcriptase PCR, and hybridization analysis.

In some embodiments, characterizing the levels of gene expression comprises detecting the amount of protein (e.g. in a sample). In some embodiments, detecting the amount of protein comprises using antibodies, antibody fragments, or other protein binding agents.

In some embodiments, the present invention provides kits and/or panels for detecting depressive disorders in subjects, comprising reagents for detecting two or more genes listed in Tables 1 and/or 4, or proteins encoded thereby. In some embodiments, the subject is a human subject. In some embodiments, the genes comprise a variant of one or more of the genes listed in Table 1 (e.g. >50% identity, >60% identity, >70% identity, >80% identity, >90% identity, >95% identity, >98% identity, >99% identity). In some embodiments, the genes comprise one or more of the genes listed in Table 4. In some embodiments, the genes comprise a variant of one or more of the genes listed in Table 4 (e.g. >50% identity, >60% identity, >70% identity, >80% identity, >90% identity, >95% identity, >98% identity, >99% identity). In some embodiments, the genes comprise one or more of ADCY3, ATP2C1, CD59, FAM46A, FMR1, GNAQ, IGSF4A/CADM1, MAF, MARCKS, NAGA, PTPRM, TLR7, and ZNF291/SCAPER. In some embodiments, the subject is an adult. In some embodiments, the genes comprise one or more of the genes listed in Table 1. In some embodiments, the genes comprise one or more of FAM46A, MARCKS, ATP2C1, NAGA, TLR7, ADCY3, ASAH1, CD59, FOS, IGSF4A/CADM1, ZNF291/SCAPER, ATP11C, MAF, GNAQ, FMR1, and PTPRM. In some embodiments, the genes comprise one or more of FAM46A, CD59, IGSF4A/CADM1, NAGA and TLR7.

In some embodiments, the present invention provides methods for assessing chronic stress in a subject, comprising: (a) characterizing the levels of gene expression of one or more genes in a sample from a subject, wherein said one or more genes are selected from the genes listed in Table 2; and (b) identifying risk of chronic stress in said subject based on said levels of gene expression. In some embodiments, the subject is a human subject. In some embodiments, the genes comprise a variant of one or more of the genes listed in Table 2 (e.g. >50% identity, >60% identity, >70% identity, >80% identity, >90% identity, >95% identity, >98% identity, >99% identity).

In some embodiments, the present invention provides kits or panels for detecting chronic stress in a subject comprising reagents for detecting two or more genes listed in Table 2, or proteins encoded thereby. In some embodiments, the subject is a human subject. In some embodiments, the subject is a human subject. In some embodiments, the genes comprise a variant of one or more of the genes listed in Table 2 (e.g. >50% identity, >60% identity, >70% identity, >80% identity, >90% identity, >95% identity, >98% identity, >99% identity).

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows plots validating adolescent biomarker genes by quantitative RT-PCR; RNA was prepared from the blood of adolescents with MDD and ND controls; the amounts of specific mRNA were normalized to 18s rRNA expression.

FIG. 2 shows plots validating adult biomarker genes by quantitative RT-PCR; RNA was prepared from the blood of adult subjects with MDD, and age- and race-matched controls; the amounts of specific mRNA were normalized to 18s rRNA expression.

DETAILED DESCRIPTION

- Top of Page


OF THE INVENTION

Depressive disorders (e.g. MDD) are the leading cause of disability in the United States when measured as total time lost to disability, affecting more than 18 million people annually in the USA alone. Depressive disorders, the most common of affective illnesses, include a large set of illnesses from seasonal depressive disorder to chronic depression. There are currently no known biological markers for depression; diagnosis is made by physicians or psychologists based on structured interviews with the patients. Biomarkers can improve definitive diagnosis, treatment, and potentially prevention of depression.

In some embodiments, the present invention provides biological markers indicative of and/or diagnostic of a depressive disorder. In some embodiments, biological markers are indicative of and/or diagnostic of MDD. In some embodiments, biological markers are blood biomarkers. In some embodiments, the present invention provides one or more biomarkers, or a panel of biological markers, that can be identified from tissue or blood or other sample types. In some embodiments, these biological markers show increased or decreased levels of gene-specific RNA in subjects with current depressive symptoms (e.g. MDD symptoms) compared to those of controls. In some embodiments, these biological markers show increased or decreased levels of protein expressed from these genes in subjects with current depressive symptoms (e.g. MDD symptoms) compared to those of controls. In some embodiments, the present invention assesses one or more genes from the genes listed in Tables 1 and 4. In some embodiments the present invention provides a panel of reagents for detecting genes or encoded proteins comprising one or more gene from Tables 1 and 4. In some embodiments the present invention provides a panel of reagents for detecting genes or encoded proteins consisting of one or more gene from Tables 1 and 4. In some embodiments, a panel comprises one or more reagents for detecting genes or encoded proteins from Tables 1 and/or 4 and one or more additional genes. In some embodiments, the present invention provides a set of genes whose mRNA levels differ in the blood of subjects showing higher and lower level of depressive behavior (e.g. MDD). In some embodiments, the present invention provides a set of genes whose protein levels differ in the blood of subjects showing higher and lower level of depressive behavior (e.g. MDD). In some embodiments, the present invention provides biological markers that are common between those expressed in the blood and those expressed in the brain regions of animals, showing higher and lower level of depressive behavior. In some embodiments of the present invention, one or more such genes are used to diagnose or suggest a risk of depression from human sample (e.g., blood sample). In some embodiments, the presence of a gene or panel of genes that correlates with depression (e.g. is indicative of depression, is diagnostic of depression) allows a treating physician to take any number of courses of action, including, but not limited to, further diagnostic assessment, selection of appropriate treatment (e.g., pharmaceutical, nutritional, counseling, and the like), increased or decreased monitoring, etc. In some embodiments, changes in expression of a gene or panel of genes that correlates with depression (e.g. is indicative of depression, is diagnostic of depression) allows a treating physician to take any number of courses of action, including, but not limited to, further diagnostic assessment, selection of appropriate treatment (e.g., pharmaceutical, nutritional, counseling, and the like), increased or decreased monitoring, etc.

In some embodiments the present invention provides a method for detecting or assessing the risk of depressive disorders (e.g. MDD or chronic stress) in a subject. In some embodiments the present invention provides a method for diagnosing depressive disorders (e.g. MDD) in a subject. In some embodiments the present invention provides a method for detecting or assessing the risk of depressive disorders in a subject, comprising the steps of: providing a sample from a subject (e.g., a blood sample), identifying the level of gene expression of one or more genes, wherein said one or more genes is selected from the genes listed in Tables 1, 2 and/or 4, and identifying the presence or absence or a risk of depressive disorders (e.g. MDD) in said subject based on said level of gene expression. In some embodiments the present invention provides methods for characterizing the level of gene expression of a panel of genes comprising detecting the amount of mRNA of a panel of genes of one or more of the genes listed in Tables 1, 2 and/or 4. In some embodiments, the panel comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 . . . 30 . . . 40, etc. genes. In some embodiments the present invention provides methods comprising the step of exposing a sample to nucleic acid probes complementary to said mRNA of a panel of genes from the genes listed in Tables 1, 2 and/or 4. In some embodiments the methods employ a nucleic acid detection technique comprising one or more of microarray analysis, reverse transcriptase PCR, quantitative reverse transcriptase PCR, and hybridization analysis. In some embodiments the present invention provides a method for detecting depressive disorders (e.g MDD) in a human subject.

In some embodiments the present invention provides methods for characterizing the level of gene expression of a panel of genes comprising detecting the amount of protein (e.g. in the blood) expressed by a panel of genes of one or more of the genes listed in Tables 1, 2 and/or 4. In some embodiments the present invention provides methods detecting changes in the amount of protein (e.g. in the blood) expressed by a panel of genes of one or more of the genes listed in Tables 1, 2 and/or 4. In some embodiments, the panel comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 . . . 30 . . . 40, etc. genes. In some embodiments the present invention provides methods comprising the step of exposing a sample to antibodies for the proteins expressed by a panel of genes from the genes listed in Tables 1, 2 and/or 4. In some embodiments, detecting a change in the expression of one or more of the genes listed in Tables 1 and/or 3 comprises exposing a sample to containing the one or more biomarkers to antibodies specific to the biomarkers and detecting the binding of the antibodies to the biomarkers. In some embodiments the present invention provides a method for detecting depressive disorders (e.g. MDD) in a human subject.

In some embodiments, the present invention provides biomarkers for depressive disorders (e.g. MDD) in adolescents (e.g. biomarkers of Table 4). In some embodiments, altered expression of one or more biomarkers of adolescent depression (e.g. MDD) is indicative and/or diagnostic for adolescent depression (e.g. MDD). In some embodiments, increased expression of one or more biomarkers of adolescent depression (e.g. MDD) is indicative and/or diagnostic for adolescent depression (e.g. MDD). In some embodiments, decreased expression of one or more biomarkers of adolescent depression (e.g. MDD) is indicative and/or diagnostic for adolescent depression (e.g. MDD). In some embodiments, altered (e.g. increased and/or decreased) expression of one or more biomarkers (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) selected from of ADCY3, ATP2C1, CD59, FAM46A, FMR1, GNAQ, IGSF4A/CADM1, MAF, MARCKS, NAGA, PTPRM, TLR7, and ZNF291/SCAPER is indicative and/or diagnostic for adolescent depression (e.g. MDD). In some embodiments, altered (e.g. increased and/or decreased) expression of one or more biomarkers (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) selected from of ADCY3, ATP2C1, CD59, FAM46A, FMR1, GNAQ, IGSF4A/CADM1, MAF, MARCKS, NAGA, PTPRM, TLR7, and ZNF291/SCAPER demonstrates an increased risk adolescent depression (e.g. MDD).

In some embodiments, the present invention provides biomarkers for depressive disorders (e.g. MDD) in adults (e.g. biomarkers of Table 1). In some embodiments, altered expression of one or more biomarkers of adult depression (e.g. MDD) is indicative of and/or diagnostic for adult depression (e.g. MDD). In some embodiments, altered expression of one or more biomarkers of adult depression (e.g. MDD) is indicative of increased risk of adult depression (e.g. MDD). In some embodiments, increased expression of one or more biomarkers of adult depression (e.g. MDD) is indicative and/or diagnostic for adult depression (e.g. MDD). In some embodiments, decreased expression of one or more biomarkers of adult depression (e.g. MDD) is indicative and/or diagnostic for adult depression (e.g. MDD). In some embodiments, altered (e.g. increased and/or decreased) expression of one or more biomarkers (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) selected from of FAM46A, MARCKS, ATP2C1, NAGA, TLR7, ADCY3, ASAH1, CD59, FOS, IGSF4A/CADM1, ZNF291/SCAPER, ATP11C, MAF, GNAQ, FMR1, and PTPRM is indicative and/or diagnostic for adult depression (e.g. MDD). In some embodiments, altered (e.g. increased and/or decreased) expression of one or more biomarkers (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) selected from of FAM46A, MARCKS, ATP2C1, NAGA, TLR7, ADCY3, ASAH1, CD59, FOS, IGSF4A/CADM1, ZNF291/SCAPER, ATP11C, MAF, GNAQ, FMR1, and PTPRM is indicative of an increased risk of adult depression (e.g. MDD). In some embodiments, altered expression of one or both of FAM46A and TLR7 is indicative and/or diagnostic for adult depression (e.g. MDD). In some embodiments, altered expression of one or more of FAM46A CD59, IGSF4A/CADM1, NAGA and TLR7 is indicative of an increased risk of adult depression (e.g. MDD).

In some embodiments the present invention relates to novel gene expression profiles that correlate with depressive disorders (e.g. MDD or chronic stress), and uses thereof. In some embodiments the present invention relates to novel gene expression profiles that are indicative of depressive disorders (e.g. MDD). In some embodiments the present invention relates to novel gene expression profiles that are diagnostic of depressive disorders (e.g. MDD). In some embodiments, a panel of two or more genes is analyzed (e.g. 2 genes . . . 5 genes . . . 10 genes . . . 20 genes . . . 50 genes . . . 100 genes . . . 200 genes . . . 500 genes, etc.). In some embodiments, the panel has a number of different detection reagents (e.g., oligonucleotide probes) that have specificity for genes associated with depression and identified herein (e.g. Table 1, 2 and/or 4). It is contemplated that in some embodiments samples are prepared from blood RNA samples of patients with depressive disorders and control samples, and the prepared samples are applied to the panel. It is contemplated that the differential hybridization of the patient samples relative to the control samples provides an expression signature of depressive disorders. In some embodiments, gene expression from a test sample is compared with a prior sample from the same patient to monitor changes over time. In some embodiments, gene expression from a test sample is compared with a sample from the patient under a different treatment regimen (e.g., pharmaceutical therapy) to test or monitor the effect of the therapy. In some embodiments, gene expression from a test sample is compared to gene expression from a negative control sample (e.g., a subject known to not have depression). In some embodiments, gene expression levels from a test sample are compared to predetermined threshold levels identified (e.g., based on population averages for patients with similar age, gender, metabolism, etc.) as “normal” for individuals without depression. In some embodiments, an increase or decrease of greater than 1.2-fold (e.g., 1.5-fold, 2-fold, 3-fold, 5-fold, 10-fold, or higher) compared to “normal” levels or any increase over a normal level or threshold level is identified as at risk for depression.

A variety of known biological assays may be used to assess expression levels of depression markers. For example, in some embodiments, a microarray is used. Different kinds of biological assays are called microarrays including, but not limited to: DNA microarrays (e.g., cDNA microarrays and oligonucleotide microarrays); protein microarrays; tissue microarrays; transfection or cell microarrays; chemical compound microarrays; and, antibody microarrays. A DNA microarray, commonly known as gene chip, DNA chip, or biochip, is typically a collection of microscopic DNA spots attached to a solid surface (e.g., glass, plastic or silicon chip) forming an array for the purpose of expression profiling or monitoring expression levels for thousands of genes simultaneously. The affixed DNA segments are known as probes, thousands of which can be used in a single DNA microarray. Microarrays can be used to identify disease genes by comparing gene expression in disease and normal cells. Microarrays can be fabricated using a variety of technologies, including but not limiting: printing with fine-pointed pins onto glass slides; photolithography using pre-made masks; photolithography using dynamic micromirror devices; ink-jet printing; or, electrochemistry on microelectrode arrays.




← Previous       Next →
Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Methods for detection of depressive disorders patent application.

###

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Methods for detection of depressive disorders or other areas of interest.
###


Previous Patent Application:
Methods and compositions for the treatment of psychotic disorders through the identification of the olanzapine poor response predictor gene signature
Next Patent Application:
Methods of subclassification of ductal carcinoma of the breast
Industry Class:

Thank you for viewing the Methods for detection of depressive disorders patent info.
- - -

Results in 0.34447 seconds


Other interesting Freshpatents.com categories:
QUALCOMM , Apple ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2362

66.232.115.224
Browse patents:
Next
Prev

stats Patent Info
Application #
US 20120094859 A1
Publish Date
04/19/2012
Document #
File Date
12/31/1969
USPTO Class
Other USPTO Classes
International Class
/
Drawings
0




Follow us on Twitter
twitter icon@FreshPatents





Browse patents:
Next
Prev
20120419|20120094859|methods for detection of depressive disorders|The present invention relates generally to the detection or diagnosis of depressive disorders, and provides methods and compositions useful for this purpose. In particular, the present invention provides biomarkers for the detection or diagnosis of major depressive disorder, and methods of use thereof. |
';