FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: December 09 2014
newTOP 200 Companies filing patents this week


Advertise Here
Promote your product, service and ideas.

    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Your Message Here

Follow us on Twitter
twitter icon@FreshPatents

Customizing broadcast transmissions to viewer preferences

last patentdownload pdfimage previewnext patent

Title: Customizing broadcast transmissions to viewer preferences.
Abstract: Systems and methods allow users to customize content of broadcast transmissions. A parent might, for example, wish to remove or replace profanity from an audio portion of the movie or violence from audio and video portions of the movie so that it is more suitable for younger viewers. The method comprises receiving at a viewing station a broadcast transmission, performing, via the viewing station, a search to identify specified material in the broadcast transmission, and, in response to identifying the specified material in the broadcast transmission, modifying the broadcast transmission to suppress the specified material so that the broadcast transmission can be presented via the viewing station without the specified material. ...


Browse recent Wounder Gmbh., LLC patents - Dover, DE, US
Inventor: Melvin L. Barnes, JR.
USPTO Applicaton #: #20120084805 - Class: 725 28 (USPTO) - 04/05/12 - Class 725 
Interactive Video Distribution Systems > Access Control Or Blocking >Of Specific Program (e.g., Based On Program Rating)



view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120084805, Customizing broadcast transmissions to viewer preferences.

last patentpdficondownload pdfimage previewnext patent

RELATED APPLICATIONS

This application claims priority to and is a continuation of U.S. application Ser. No. 12/775,980, filed May 7, 2010, which is a continuation of U.S. application Ser. No. 11/556,430, filed Nov. 3, 2006, issued as U.S. Pat. No. 7,725,360, which is a continuation of U.S. patent application Ser. No. 09/606,350 filed Jun. 29, 2000, issued as U.S. Pat. No. 7,133,837, all of which are hereby incorporated by reference in their entireties.

TECHNICAL FIELD

The present disclosure generally relates to devices and methods for providing personal communications including handheld mobile telephones.

BACKGROUND

The present disclosure relates to a system for providing transmissions relating to broadcast transmissions and methods of customizing and presenting the broadcast content in the form of audio, video, and text, to a viewer (i.e., a person). Until recently, radio and television were the two most common forms of presenting audio or audio and video to a viewer. However, in recent years, electronic transmissions over the Internet have become more and more widely used as a medium for presenting information to a viewer.

Television and traditional AM and FM band radio transmissions are unidirectional broadcasts of a one-to-many point transmission scheme. Most cable television stations and some digital television broadcasting companies include a unidirectional broadcast that can be viewed only by selected recipients. For example, viewers who subscribe to certain pay channels such as Showtime or Cinemax are able to view those channels, while viewers who do not subscribe to those channels cannot view those channels. In addition, viewers who desire to purchase a pay-per-view movie can telephone the broadcasting service (or through some other means indicate their desire) to purchase the movie and only those purchasers can view the movie. However, besides indicated the desire to purchase the movie or subscribe to a channel, viewers have few communications to the broadcaster and have very little control over the received information, the format and/or perspectives of viewing the information transmitted, the time of viewing, etc. In addition, traditional television and radio broadcasters transmit the same advertisements to all viewers irrespective as to the whether a viewer is likely to be a candidate interested in the advertised product.

The Internet provides a medium of communication that allows more bi-directional communication than previously available with traditional television and radio. For example, a viewer can select which web page to view from a selection of web pages and can view them in any order. When the broadcaster of the web page has implemented dynamic web pages, the viewer can also customize the web page to his or her preferences. For example, a web page can be retrieved that displays the viewer's stock portfolio. Since different viewers typically invest in different stocks, the web pages for different viewers vary accordingly. Thus, dynamic web pages have the capability of producing web pages that differ from viewer to viewer.

Chat rooms have also become increasingly popular as a forum for people of common interest to communicate by typing messages that are visible to other participants in the chat room in real-time. However, the information accessible to a potential participant of the chat room is usually limited to the participants' usernames (or screen names) and the title of the chat room. Similarly, email, list servers, and newsgroups have become other common methods of communication.

Direct marketing in the form of electronic transmissions (such as email or fax) is often used to invite participants to receive a broadcast of an auction, video presentation, a web site, or to get people to buy a product or service. Typically, the email addresses (or fax numbers) of a group of people who have a common interest (such as horse lovers, business opportunity seeks, investors, etc.) are rented or purchased from an email vender. The purchaser (or a bulk mail or fax service) will then email (or fax) an offer to all of the email addresses (or fax numbers) in hopes that at least a small percentage will respond favorably to the advertisement by purchasing the service or product or otherwise responding to the advertisement (e.g., by visiting the advertised web site). However, if the recipient of the transmission is not interested in the content of the transmission (e.g., the advertised product), the recipient will typically simply delete the email or discard the fax.

Print advertisements are also used to drive traffic to web sites. Often, however, the person reading the print ad is not also operating a computer to allow the individual to immediately access the web site if the individual desired to do so. Portable digital voice recorders have been developed that record a persons voice, which is stored for later retrieval. The most common use of voice recorders is to alleviate the need to write down information that the user wishes to remember. However, the user recording the voice message, or someone else, must still transcribe the voice message (e.g., web address or desire to purchase a product) and input that information manually into a web browser.

Many people enjoy gambling even though most people do no live near gambling establishments and people often travel great distances to participate in gambling. One alternative is online gaming, which is performed through software. Specifically, a computer program generates the order of cards in a virtual deck of cards that the user plays. The virtual cards are typically displayed in graphic form on the user's display. The computer generation of the virtual deck of cards and order of the cards (or other gaming device such as dice or roulette) is not, by many people, considered to be trustworthy and fair. In other words, many people do not trust virtual gaming in which a computer controls the device of chance (e.g., dice, cards, or roulette) and as a result, virtual gaming to date has only received limited acceptance in the general public.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic representation of a plurality of viewing stations and broadcast stations.

FIG. 2 is schematic representation depicting the flow of an example electronic transmission.

FIGS. 3A-3B is a flow chart diagram of the steps for identifying respondents as recipients and recipients as transmitters.

FIGS. 4A-4B are schematic representations of different embodiments of a command holder.

DETAILED DESCRIPTION

OF EMBODIMENTS

Unless the context of its use suggests otherwise, throughout this document the term “viewing” is meant to include seeing the video and hearing the audio of a broadcast, where both the video and audio portions of the broadcast are available. Unless evident from the context of its use, “video” throughout this document is meant to refer to the display of moving images as opposed to a still photograph. In general, the term “broadcaster” is used throughout this document to mean the entity operating the broadcast station and who transmits broadcast transmissions through the use of the broadcast station.

The present disclosure is directed to a handheld communication device and method of use. In one embodiment, the method of using a handheld mobile telephone includes capturing a plurality of images via an image input device; storing the plurality of images in a memory, receiving a first speech input, identifying command information in said first speech input; retrieving information from memory based, at least in part, on the command information. The method may further include generating a request related to an article of commerce that includes, at least in part, the information retrieved from memory, determining a destination for transmitting the request, and wirelessly transmitting said request through a mobile telephone network to the destination.

According to another embodiment, incentives are paid to persons for distributing an electronic transmission to others. For example, by keeping track of the recipients to whom participants forward transmissions, so that participants can be compensated with promised incentives, recipients are thereby provided incentive to forward the transmission to others. Thus, by providing an incentive to recipients to forward the electronic transmission containing an advertisement, the advertisement can be distributed to a much larger audience than could otherwise be accomplished without additional up front expense.

According to yet another embodiment, a person stores voice controlled commands, which are later retrieved by a computer that then exercises the stored commands. In one example, a voice recorder having commands stored thereon is placed in a docking station, which causes the software on the associated computer to retrieve the stored voice messages, convert them to text, and carry out the stored commands (e.g., buy golf clubs at golf.com). Alternately, a handheld scanner may be used to store the text representing the web address for later retrieval and use with a voice command.

According to yet another embodiment, the content and format of the audio, and video is customized as desired by the viewer. For example, after selecting a sporting event, the viewer can select a desired camera perspective, or a number of camera perspectives. The viewer may also select the desired audio, which might be selected from a choice of different sets of commentators, music, or an unrelated audio broadcast. In addition, the viewer may select an informational transmission containing information for wagering on the event, statistics relating to the event, or for competing against other viewers of the event. Finally, the viewer can store portions or all of the broadcast for later viewing, for slow motion instant replay, and/or for modifying.

According to still another embodiment, viewers customize the content of a transmission. For example, viewers can receive an entertainment video broadcast (e.g., a movie or a live play) in digital form—for either live viewing or on-demand viewing—in which the movie is modified from its original form by the viewer. A parent might, for example, wish to remove or replace the profanity from the audio portion of the movie or violence from the audio and video portions of the transmission so that it is more suitable for younger viewers. Alternately, the broadcaster may modify (e.g., remove or replace obscene language or violent video) the transmission according the requests provided by specific viewers.

According to yet another embodiment, a viewer provides feedback to a broadcaster about the broadcast (whether it be a movie, commercial, educational or other type of broadcast) by answering appropriate questions. The questions may be viewed by the viewer at the end of the broadcast or at particular points throughout the broadcast. The broadcaster may also obtain viewer reactions to broadcasts through the use of biofeedback devices that monitor the viewer's physical response (e.g., blood pressure, skin resistivity, heart rate, etc.) to the broadcast.

According to still another embodiment, a viewer selects a broadcast or portion of a broadcast for viewing. For example, a seminar is transmitted to multiple viewers who have purchased the reception of the seminar. The audio and video are transmitted with a text version of the audio or, alternately, the audio portion is converted to text through the use of voice recognition software. The text portion is indexed to the video or audio (either by the broadcaster, the creator of the programming, or the voice recognition software) and provides a number of benefits to the viewer. For example, the viewer can later search the broadcast for particular words spoken by the seminar instructor to immediately find and view the portions of the seminar that address a subject of interest. The text version is also available for reading (either from a display or in printed form) and for use in other documents. Alternately, the broadcaster can search for broadcast transmissions according to a viewer's broadcast requests.

According to yet another embodiment, a system allows people to remotely gamble with a real device of chance. For example, the viewer can see the game of chance and interact with the gaming employees and other players as if the viewer were actually in a gaming establishment.

According to still another embodiment, a virtual room is provided for viewers to meet and discuss topics of common interest. For example, in one embodiment, the viewer's display depicts a virtual room, which contains representations of other viewers who are present in the virtual room. Viewers may congregate in groups within the room to discuss subtopics of interest. Once in the room, the viewer may gather information about individuals in each group in the virtual room before entering a particular discussion.

As shown in FIG. 1, a system according to one embodiment comprises at least one viewing station 100 and one broadcast station 200 communicatively coupled together. In the preferred embodiment, the viewing station 100 is a conventional “personal” home computer (e.g., a PC Windows machine) comprised of a monitor 101, microphone 103, speakers 102, central processing unit (CPU) 107, keyboard 104, mouse 105, and Digital Subscriber Line (DSL) modem 108. In alternate embodiments, viewing station 100 may include a subset of these components or other components. For example, viewing station 100 could easily include a cable modem or other kind of communication device instead of DSL modem 108.

The software of the viewing station 100 includes a conventional operating system including a Graphic User Interface (GUI). In the preferred embodiment, the operating system is Windows 2000, which interfaces with (or includes) an internet browser—Internet Explorer. The software also includes audio-video presentation software, which in the preferred embodiment includes both RealPlayer and Windows Media Player.

Again, the selection of the particular software and the parsing of tasks between software modules is the designer's choice and dependent upon many considerations such as the format of the transmitted broadcast, cost, compatibility with other components, etc. An alternate embodiment of the viewing station might comprise the well-known WEB TV (provided the processing power required for the application permitted)—in which a television acts as the monitor and speakers of the viewing station.

The broadcast station 200 can be any station capable of communicating with the viewing station(s) of the system and that has the necessary processing (computing) capabilities, which will be evident to one skilled in the art. The broadcast station 200 may, but does not necessarily, originate the broadcast. The broadcast station 200 may receive and rebroadcast transmissions that originated from other broadcast stations or, the broadcast station 200 can receive and record broadcasts that are transmitted by other broadcast stations and then retransmit the broadcast at a later time.

In the preferred embodiment, the broadcast station 200 is a web server 201, which is a computer that accepts requests for data (e.g., web pages) over the Internet and responds by transmitting the data. The server 201 also performs various functions (e.g., storing data in a database, performing calculations) depending on the software associated with the various web pages of the web sites that it serves (i.e., depending on the application and purpose of the web page). In addition, the server 201 of the preferred embodiment includes streaming video capability.

In the preferred embodiment, the web server 201 is an Intel microprocessor based computer running Windows NT and Microsoft's Internet Information Server using Hyper Text Transport Protocol (HTTP)—which operates on top of the Transmission Control Protocol (TCP).

In the preferred embodiment, the web server 201 also includes streaming video software and software for storing compressed audio and video files into a single media file (e.g., compressed for delivery over a specific bandwidth such as 56 kilobits per second (Kbps)) on a standard web server. Although the use of streaming video is well-known in the art, a Web page containing a link (i.e., the URL) to the media file is placed on the same Web server. When this web page is accessed, the client-side player (i.e., the viewing station software) downloads the media file. After a short buffering period, the viewing station begins “playing” the media file. This “progressive playback” is supported by Microsoft's Advanced Streaming Format.

In the preferred embodiment, the media file is copied to a specialized streaming media server such as Microsoft Windows Media Services and a web page with a link to the media file is placed on the web server 201 (which may or may not be on the same computer). This embodiment may use the popular HTTP/TCP protocols as well as the User Datagram Protocol (UDP) for faster real-time transmission of audio and video data. The data is viewed by using Windows Media Player at the viewing station. Windows Media Server also has Multicast Support to greatly reduce the bandwidth necessary to broadcast to a plurality of viewers. This transmission technique is used in the applications described in which the viewer does not need to process the transmission, because the transmission of the Windows Media Server is immediately directed to the viewing station player (software). For applications in which the viewer needs to process the transmission, transmissions formatted for use with RealPlayer, or any video/audio presentation software that permits storage of the transmission on the viewer's viewing station, is used. These various software programs are well-known in the art and the details of their operation, compatibility with other software, viable applications, and capabilities are thus omitted here.

The transmission to the viewing station(s) can be accomplished with software on the server computer or a separate computer, which is used in tandem with the server computer to transmit the streaming video to viewing stations. The broadcast station 200 also includes a receiving and transmission device 202 (e.g., an Ethernet card). In general, the broadcast station 200 includes server software that is capable of selectively communicating (receiving and transmitting text, HTML, video and audio transmissions) with a plurality of viewing stations.

Alternately, the broadcaster could broadcast rf transmissions (e.g., radio), optical transmissions, satellite transmissions, cellular, or some combination thereof. The format, bandwidth, wavelength and other broadcast parameters are parameters selectable by the designer of the system based on the costs, compatibility with viewers, and benefits of each choice given the application.

The modem 108 of the viewing station 100 is capable of receiving transmissions from the broadcast station 200 and, through the appropriate software, converts the received data to information that is usable to the viewer. In the preferred embodiment, the modem 108 is a DSL modem. However, provided the speed of such devices is adequate for the application's broadcast transmission rate, a designer could also elect to communicate over a regular 56K modem, a cable modem, or an ISDN line. In summary, the viewing station 100 is coupled to the broadcast station 200 for bi-directional communication (receiving and transmitting text, HTML, video and audio transmissions) and includes conventional software for presenting the received transmissions to the viewer.

Direct marketing in the form of electronic transmissions (such as email or fax) is often used to get participants to an auction, video conference, a web site, or to get people to buy a product or service. Typically, the email addresses (or fax numbers) of a group of people who have a common interest (such as horse lovers, business opportunity seekers, investors, etc.) are rented or purchased from an email vender. The purchaser (or a bulk mail or fax service) will then email (or fax) an offer to all of the email addresses (or fax numbers) in hopes that at least a small percentage will respond favorably to the advertisement by purchasing the service or product or otherwise responding to the advertisement (e.g., by visiting the advertised web site).

One problem with this approach is that many recipients of the advertisement become irritated or enraged by being “spammed” by the unwanted email (or fax). Another option is opt-in email address lists, which are supposed to include only email addresses of people who have agreed to receive email advertisements. Opt-in email address lists, however, are rather expensive—sometimes prohibitively so.

In either case, if the recipient of the transmission containing the advertisement is not interested in the service or product (hereinafter collectively referred to as “product”), the recipient will typically simply delete the email or discard the fax. The following example uses email as the form of electronic transmission, but the present embodiment would be equally applicable to fax transmissions, or even voice transmissions (e.g., voice mail), as well, with appropriate modifications to the processing software that would be clear to one skilled in the art.

By providing an incentive for recipients to forward the electronic transmission, the advertisement can be distributed to a much larger audience, without additional up front expense. The most widely accepted incentive is a financial incentive. However, unless the price of the product is extremely high, it would be difficult to provide compensation that is sizeable enough to motivate someone to take action to forward the advertisement. In other words, if, for example, a person is promised $50 for every person to whom they forward the email and who responds to the advertisement, their income is limited the number of people to whom they know and forward the email.

By using the principle of multi-level marketing, however, greater financial incentives can be provided. For example, if the person is promised $10 for every person to whom they forward the email and who responds to the advertisement and $10 for each person to whom their recipients forward the email and who responds to the advertisement, there potential income is much greater. Thus, through the principle of multi-level marketing, a person may forward the transmission to only ten people, but might earn thousands of dollars due to the efforts of those to whom the person forwarded the transmission. Although this is not likely to be the case, this possibility provides incentive for people to forward the transmission, while if their income was limited to their own efforts, they might not forward the transmission.

This concept is shown in FIG. 2. For example, a person 701 who receives an email containing the advertisement receives $10 for each person to whom they forward the email and who responds to the advertisement 702 (a person who responds to the transmission is hereinafter referred to as a “respondent”). In other words, the transmitter 701 receives $10 for each first level respondent 702. In addition, that transmitter 701 receives $9 for each person that responds 703 to an advertisement in an email from one of the recipients 705 to whom the transmitter 701 forwarded the advertisements. In other words, the transmitter 701 receives $9 for each second level respondent 703. Furthermore, the transmitter 701 receives $8 for each person that responds 704 to the advertisement in an email forwarded from one of the transmitter's recipients' recipients 703. In other words, the transmitter 701 receives $8 for each third level respondent 704. In this example, transmitter 701 forwarded the email to only two people, but earned commissions of $46, $26 dollars of which is the result of the transmitter's 701 first level recipients (702 and 705) forwarding the email to others. A respondent may or may not also forward the transmission and any recipient may or may not also be a respondent. As an illustration, recipient 705 forwarded the transmission, but need not have been a respondent (but was in the above example). Recipient 703a was a respondent, but did not forward the transmission. Recipient 703b was a respondent who did forward the transmission.

The number of levels of respondents for which an incentive is promised (and thus, the levels deep from which participants receive commissions) is at the discretion of the promoter executing the marketing program and the software designer. Thus, one goal is to facilitate the payment of incentives by keeping track of the recipients to whom participants forward the advertisement so that they can be compensated with the promised incentives, thereby providing incentive for recipients to forward the transmission to others.

In the following example embodiment, the electronic transmissions are emails and the vender is interested in selling an investment newsletter at an annual subscription price of $300. The promoter is paid $50 for each respondent that subscribes to the newsletter, of which up to $40 is paid to recipients for forwarding the transmission (and advertisement) to someone who ultimately subscribes to the newsletter (i.e., responds). On behalf of the vender, the promoter transmits ten thousand emails to persons known to be interested in investing and who have agreed to accept emails advertising investment products (opt-in email addresses). The email address of the ten thousand original recipients is stored on the email processing computer of the promoter, which is in this example (but does not need to be) the same computer that transmitted the emails. The email processing computer in this example is a broadcast station 200 as described above.

The email includes two parts. The first part includes the advertisement for the newsletter, which provides a description of the newsletter, the benefits provided by the newsletter, and the web address (URL) for finding more information about newsletter and where the recipient may purchase the newsletter. In this example, this part of the email reads:

“Would you like to increase your investment earnings while reducing your risk? If you would like to learn how, without risk, read on! Our Investor's Newsletter is guaranteed with a 100%, money back, no-questions-asked, guarantee. To learn more or to subscribe, go to www.EarnAndInvest.com.”

A second part (the next portion of the body) of the email includes an incentive for forwarding the email to others. More specifically, the second part includes a description of the incentive, instructions for participating, and the web address where recipients can get more information about the promotion. In this example, this part of the email reads:

“Would you like to earn money by simply forwarding emails? No sign-up, no money required!! Simply forward this email to all of your friends and “cc” us at Newsletter@thunderboltpromotions.com. We\'ll keep track of everyone you forward this promotion to. You\'ll get $10 for every person who subscribes to the newsletter and is in the chain of emails in which you forwarded the advertisement and is within four email transmissions of you (i.e., four emails deep). When the program is over (on July 15), we\'ll email you to tell you how much you earned so you can give us your name and address to receive your check. For more information about this promotion, visit our site at www.thunderboltpromotions.com.”

Thus, each of the ten thousand original recipients receives this two-part email. Some of these recipients visit the vender\'s web site to subscribe to the newsletter, and therefore become a “respondent” to the advertisement. Some of these recipients forward the email to others in hopes of receiving the financial incentive. Some of the recipients do both (become a respondent and forward the advertisement). The original recipients (and future recipients) that do forward the email, cc the email (i.e., transmit a copy of the email) to the email address of newsletter@thunderboltpromotions.com, which is a transmission certification receptor. As discussed below, the promoter can then access the transmission certification receptor (i.e., access the email server receiving the email sent to newsletter@thunderboltpromotions.com) to determine the email addresses of the transmitters and recipients of the email carrying the advertisement. In the present embodiment, the transmission certification receptor is an email address resident on the email processing computer, which acts as the email server as well. However, the transmission certification receptor could be an email address on any email server in which the emails are retrievable by the email processing computer.

Each person who subscribes to the advertisement (i.e., each respondent) is asked to supply the email address at which the respondent received the advertisement. The vender then periodically provides the email addresses of the respondents to the promoter. In the present embodiment, the vender gives the promoter the email addresses of all new subscribers (respondents) on a weekly basis. This information is stored by the promoter on the email processing computer in a database table called RESPONDENTS.

The email processing computer will routinely access the emails that are received at the transmission certification receptor (newsletter@thunderboltpromotions.com) and identify the email address of the sender of the email (hereinafter the “transmitter”) and identify all the email addresses of the corresponding recipients (hereinafter “recipients”) of the email. In the present embodiment, this is done hourly. The emails are processed in the order in which they are received at the transmission certification receptor (newsletter@thunderboltpromotions.com). In this embodiment, the initial processing also parses the subject line to ensure that particular words are present, such as the word “newsletter” in this example. Emails that do not include the proper word or phrase in the subject line are not processed and are deleted or stored for other use as decided by the promoter. Alternately, the initial processing could parse the body of the transmission (the body of the email in this example) to identify particular words or phrases or the time of transmission (or reception by others), or not parse the body or subject line at all.

The initial processing results in information being stored in the EMAIL table of the database that includes (for each email) an index number for the email received at newsletter@thunderboltpromotions.com, the email address of the transmitter of that email, and the email addresses of all of the corresponding recipients of that email. Each email that is processed is assigned an incrementally higher index number. Emails with higher index numbers are then known to have been received later than emails with lower index numbers.

As previously discussed, the email processing computer in this embodiment includes the same components as the broadcast station 200 described above, and may also function as a broadcast station. The processing software in the present embodiment is written in Microsoft Visual Basic that accesses a Microsoft SQL database (a relational database). In addition, the Visual Basic software uses a Visual Basic Component, which in this embodiment is Microsoft MAPI (Messaging Application Programming Interface) Component, to communicate with the email server acting as the transmission certification receptor. The initial processing software retrieves the sender field of the email to identify the email address of the transmitter. Likewise, the software retrieves the recipients field of the email to identify the email addresses of the recipients. Similarly, if the subject line is being parsed, the software retrieves the subject field of the email for parsing. Other information, as is deemed necessary by the designer or promoter, can be discerned from other fields, the body or the trailer of the email as well.

Further details of extracting information from emails (both the body of the email, addresses and the subject line) and other transmissions are well-known in the art and are not repeated here. The particular method used to extract the information from the transmissions are left to the designer, who will make the election based on the programming language, the operating system, the transmission system, the speed of the CPU, costs, and other factors.

Periodically, and in the present embodiment coinciding with the arrival of the list of respondents from the vender, the secondary processing is performed by the email processing computer. The goal of the secondary processing is to identify each of the respondents as a recipient and to identify the transmitters (i.e., email addresses of persons) who transmitted the email advertisement eventually received by that recipient and who are to be compensated with the promised incentives.

Referring to FIGS. 3A-B, during the secondary processing, the email processing computer retrieves a respondent email address from memory 710 and searches the original recipients to determine if the respondent was one of the original ten thousand recipients 711. If the respondent is identified as one of the original recipients, the RESPONDENTS table of the database is updated 713 to mark that respondent as being completed and identified as an original recipient and processing continues with the next respondent 710. If the respondent is not identified as an original recipient, the computer searches the recipients in the EMAIL table 714 to identify the first email (i.e., by email index) that was received at the transmission certification receptor (newsletter@thunderboltpromotions.com) and in which the respondent was a recipient. In the present example, this is easily done by searching from lower email index numbers to higher index numbers. If there are no recipients that match the respondent, then that respondent record in the RESPONDENT table is updated 716 to indicate that no matching recipient was found and the secondary processing continues to the next respondent email address 710.

If a recipient email address matching the respondent email address is identified, the corresponding transmitter (the transmitter who forwarded the email to the respondent) (hereinafter referred to as “first transmitter”) is also identified in the database because the first transmitter is the only transmitter associated with the same email index. The email address of the first transmitter is then stored 717 in a separate table (e.g., the COMMISSIONS table) in the database, along with the commission that the first transmitter is to receive for that respondent. In this case, a separate field in the table is used to store the value of the commission—$10.

Next, the goal of the secondary processing is to identify the email in which the first transmitter is a recipient. First, the original recipients are searched to determine if the first transmitter was one of the original ten thousand recipients. If the first transmitter is identified among the original recipients, the respondent in the RESPONDENTS table is marked completed 719 and the processing continues with the next respondent 710. If the first transmitter is not identified among the original recipients, the EMAIL table is searched 720 to identify the first email (i.e., by email index) that was received at newsletter@thunderboltpromotions.com and in which the first transmitter was a recipient. In the present example, this is easily done by searching from lower email index numbers to higher index numbers. If there are no recipients that match the first transmitter, then that respondent record in the RESPONDENT table is updated 722 to indicate that processing has been completed and the processing continues with the next respondent 710. Theoretically, this should not occur as all transmitters of the email should be either an original recipient or should have received the email from another transmitter. However, this could occur due to technical problems (e.g., the cc of the person forwarding the email to the first transmitter never reaching newsletter@thunderboltpromotions.com or the transmitter could have typed in a printed version of the email that the transmitter never received electronically).

If the first transmitter is identified as a recipient, the corresponding transmitter (the transmitter who forwarded the email to the first transmitter) (hereinafter referred to as “second transmitter”) is also identified in the database because the second transmitter is the only transmitter associated with the same email index. The email address of the second transmitter is then stored 723 (e.g., in the COMMISSIONS table) in the database, along with the commission that the second transmitter is to receive for that respondent. In this case, the value of the commission of $10 is stored in the database and the processing continues with the next respondent 710.

Although not shown in the figures because the process is substantially the same as the process just described, the next goal of the secondary processing is to identify the email in which the second transmitter is a recipient. First, the original recipients are searched to determine if the second transmitter was one of the original recipients. If the second transmitter is identified among the original recipients, the respondent is marked completed in the RESPONDENTS table and processing continues with the next respondent. If the second transmitter is not identified among the original recipients, the EMAIL table is searched to identify the first email (i.e., by email index) that was received at newsletter@thunderboltpromotions.com and which the second transmitter was a recipient. In the present example, this is easily done by searching from lower email index numbers to higher index numbers. If there are no recipients that match the second transmitter, then that respondent record in the RESPONDENT table is updated to indicate that none were identified and that processing has been completed. The processing then continues with the next respondent.

If the second transmitter is identified as a recipient, the corresponding transmitter (the transmitter who forwarded the email to the second transmitter) (hereinafter referred to as “third transmitter”) is also identified in the database because the third transmitter is the only transmitter associated with the same email index. The email address of the third transmitter is then stored (e.g., in the COMMISSIONS table) in the database, along with the commission that the third transmitter is to receive for that respondent. In this case, the value of the commission of $10 is stored in the database.

Next, the goal of the secondary processing is to identify the email in which the third transmitter is a recipient. First, the original recipients are searched to determine if the third transmitter was one of the original recipients. If the third transmitter is identified among the original recipients, the respondent is marked completed in the RESPONDENT table and the processing continues with the next respondent. If the third transmitter is not identified among the original recipients, the EMAIL table is searched to identify the first email (i.e., email index) that was received at newsletter@thunderboltpromotions.com and in which the third transmitter was a recipient. In the present example, this is easily done by searching from lower email index numbers to higher index numbers. If there are no recipients that match the third transmitter, then that respondent record in the RESPONDENT table is updated to indicate that none were identified and that processing has been completed for that respondent. The processing then continues with the next respondent.

If the third transmitter is identified as a recipient, the corresponding transmitter (the transmitter who forwarded the email to the third transmitter) (hereinafter referred to as “fourth transmitter”) is also identified in the database because the fourth transmitter is the only transmitter associated with the same email index. The email address of the fourth transmitter is then stored (e.g., in the COMMISSIONS table) in the database, along with the commission that the fourth transmitter is to receive for that respondent. In this case, the value of the commission of $10 is stored in the database and processing continues with the next respondent.

In the present embodiment, the storage of the commission in the COMMISSIONS table is performed by first searching for the identified transmitter (first, second, third, and fourth) in the COMMISSIONS table. If that transmitter is found in the COMMISSIONS table, then the commission field in the table is simply increased by the amount of the currently calculated commission.

In an alternate embodiment, the identified transmitter and associated commission are simply appended to the end of the COMMISSIONS table. When secondary processing is complete, the table is then sorted on the transmitter field, commissions for duplicate transmitter records added, and duplicate transmitter records then deleted (except for one) leaving one record for each transmitter and the calculated total commission earned by that transmitter.

The secondary processing continues for each respondent for as many transmitters that are promised the incentive—in this case four transmitters. Although in the present example the secondary processing is performed weekly and coinciding with the receipt of new respondents, the secondary processing could be performed once, when the promotion is finished. Alternately, the secondary processing could be performed monthly or anytime that processing power is available and respondent email addresses are available for processing.

Periodically (or alternately when the advertising campaign is complete), the email processing computer will perform a transmission notification. In the present embodiment, this entails emailing each email address in the COMMISSIONS table to inform them that they have earned a commission. The email explains that the person has earned a commission and refers the person to the promoter\'s web site where the person may enter his or her name and address so that the promoter may forward the person a check for the commission earned (minus any administrative costs). Optionally, the transmission notification may include the amount of the commission earned or any other information deemed necessary by the promoter.

In the present embodiment, the commission for all identified transmitters (first, second, third, and four transmitters) is the same ($10). Because the commission is the same for each payable transmitter (first, second, third, and fourth transmitters), the amount of the commission does not necessarily need to be stored. The transmitter (i.e., transmitter\'s email) could be appended to the COMMISSIONS table by itself. Prior to the transmission notification, the processing software then counts the number of times each transmitter appears in the table and multiplies this number by the amount of the commission to determine the current earned commission for each transmitter.

The commission could also be a stepped commission. For example, first transmitters would receive $10, second transmitters would receive $9, and third transmitters would receive $8 as illustrated in FIG. 2. The commission structure is simply a design choice selected by the software designer and promoter and there are numerous alternative commission structures. The commission structure could be based on the number of recipients that receive the transmission so that, in the present example, the total commission value ($40) is split among the identified transmitters. If there is only one identified transmitter, then that transmitter receives the entire $40. If there are two identified transmitters, they each receive $20 and so on. Recipients could also be paid (e.g., 10 cents) for each person to whom they forward they transmission—irrespective of whether any recipients respond to the advertisement (in addition to, or instead of, being paid for downline respondents). Thus, over a month, a recipient would be paid for forwarding a number (e.g., ten) of different advertisements to others. In this example, the processing software determines which recipients have already received the transmission and does not credit the transmitter for recipients that have already received the transmission. Of course, the number of transmitters that are identified (and paid a commission) and the structure of the incentive is also the designer\'s and/or promoter\'s choice.

As an alternative to the example of the first embodiment, the vender\'s web site automatically provides the respondent information at the end of each day. This automatic supplying of the respondent email addresses automatically initiates the secondary processing by the email processing computer, provided initial processing is up to date (i.e., there is no back log of emails that need initial processing). Alternately, the vender could perform the functions of the promoter itself, in which case the email processing server and the vender\'s web site server are the same computer and secondary processing would take place each time a respondent responds.

In the example of the first disclosed embodiment, the email included only one advertisement. In practice, however, it may be advantageous to include multiple advertisements with the same (or optionally different) commission structure for each advertisement respondent.

In the first embodiment, before storing each recipient, the software may optionally search the previously stored recipients to determine if the recipient has already been identified as a recipient and stored during the initial processing of a previous transmission. If the recipient has already been stored as a recipient, the recipient is not stored again.

In the case of emails that have been forwarded, the body of each email will include the chain of transmitters who have received and then transmitted that email. In a second embodiment, the email processing computer performs the initial processing as described above with respect to the first embodiment, and also stores each email to be retrievable by the email index number. Once the secondary processing identifies the respondent as a recipient in the EMAIL table, the email having the email index of the corresponding recipient is retrieved. The secondary processing then parses that email (the body and/or trailer) to identify the transmitters that forwarded that email, which was eventually received by the respondent. Only the most recent transmitters that are due a commission (payable transmitters) need be identified—four in the first example. This embodiment allows the processing to identify the precise chain of emails and transmitters that led to the respondent receiving the transmission.

However, sometimes recipients may cut and paste the body of the email into a new blank email to alleviate the need for future recipients to have to scroll down through the non-substantive portion of the email (the transmitter email addresses, recipient email addresses, and email trailers). In this embodiment, when this occurs, processing terminates without identifying all transmitters who are to receive incentives.

In the first embodiment (FIG. 3), the stored transmitter and recipients of each email is used to reconstruct a chain of transmitters and recipients. However, some recipients may receive the transmission from multiple people and may not actually forward (transmit to others) the first email received, but instead forward the fourth email received. In the first embodiment (FIG. 3), the processing simply assigns the incentive (e.g. reward or commission) to the first person to transmit the transmission to the recipient, even if the recipient actually forwarded a subsequent email.

If necessary (as dictated by the application or desired by the promoter), the first and second embodiments may be combined to more accurately determine the actual transmitters that forwarded the email that eventually was received by a particular recipient. In such a combination, after the email index (and email) is found containing the respondent as a recipient, parsing of the entire email is the first step in identifying the actual transmitters (as described in the second embodiment). In those cases where a person had cut and paste the substantive portion of the email into a new email (and thus removes the identity of the previous recipients and transmitters from the email transmission), the software then resorts to the secondary processing of the first disclosed embodiment (of FIG. 3) to identify the transmitter who forwarded the email to the recipient (i.e., the transmitter of the email that had cut and paste the email content into a new email that was forwarded). The software in this third embodiment resorts to the secondary processing of the first embodiment when a transmitter of a transmission (e.g., email) cannot be identified as an original recipient.

Once the transmitter is identified as a recipient in an email (by searching the recipients), the processing retrieves the email received by that transmitter to determine if the actual chain of transmitters can be identified from the email. If the actual chain of transmitters cannot be found in an email, the processing looks at the time at which each transmitter forwarded the email to that recipient to thereby eliminate some of the transmitters and to determine which of the remaining transmitters\' emails was the most likely to have been forwarded by that recipient. For example, if transmitter A transmitted the email to recipient B who immediately forwarded the email, transmitters who forwarded the email to recipient B after recipient B forwarded the email can be eliminated as being in the actual chain of emails that led to the respondent.

In the above disclosed embodiments, the respondent provides the email address at which he or she received the email with the advertisement to the vender. Instead, however, the respondent could be asked to provide the email address of a person who forwarded the respondent the email with the advertisement. This eliminates the first step in the secondary processing.

In another embodiment, the recipients do not forward the email to others. Instead, the recipient is instructed to reply to the presently received transmission and to include in the reply, the email addresses of all persons that the recipient wishes to receive the transmission (e.g., advertisement). The reply is received at the transmission certification receptor. Thus, in this fourth embodiment the recipients send only one email, which is transmitted to the transmission certification receptor. The content of this email includes all the email addresses of people that this person wishes to receive the transmission. Thus, instead of providing incentive for forwarding the transmission, this embodiment provides incentive to persons for providing email addresses to the promoter. The promoter then determines the transmitter of each email received at the transmission certification receptor (in the method described above) and parses the body of the email to identify all of the email addresses provided by that transmitter. The promoter\'s broadcaster station then transmits an email to all of the email addresses supplied by that recipient with an indication in the email that their email address was provided by that transmitter (e.g., “Your email was provided to us by john@company.com who thought you might find this email interesting.”). Alternately, the email may not provide any indication as to who provided the promoter with the recipient\'s email address.

Because all emails are transmitted by the promoter and subsequently replied to, this embodiment allows the promoter to determine precisely who (which transmitter) caused the transmission to be transmitted to each recipient. This embodiment also allows each email address to be checked to determine if the email address has already received the advertisement transmission. The promoter may then elect to not resend the email advertisement to those recipients that have already received it.

Although one embodiment has been described in the context of transmitting an advertisement, other embodiments have other applications such as games of chance, competitions, as well as others.

Print advertisements are also used to drive traffic to web sites. Often, however, the person reading the print ad is not also in front of a computer to allow the individual to immediately access the web site if the individual desired to do so. Portable digital voice recorders have been developed that record a person\'s voice, which is stored for later retrieval. The most common use of voice recorders is to alleviate the need to write down information that the user wishes to remember.

According to one embodiment, a voice recorder is integrated with a writing implement (i.e., ink pen) to form a command holder 300 as shown in FIG. 4A. One end of the instrument functions as an ink pen, while the other end 401 of the command holder functions as a microphone 304. During use, a user on an airplane may see a product in a gift magazine that the user wishes to buy for his father. The command holder allows the user to record the website address of the magazine advertisement and then record a relevant message such as “website, gifts.com, stop, buy product number 131323, golf club, for dad for father\'s day.”

The audio input comprising a microphone 304 is located near the first end 301 of the command holder 300. An audio output comprising a miniature speaker 303 is located near the middle of the command holder 300. Similarly, near the middle of the command holder is an LCD 310 and two finger operable buttons 320, 321 that allows the user to perform various functions such as determining the number of messages stored, to delete (or overwrite) stored voice data.

In operation, the user identifies a print advertisement (or otherwise learns of a website address) that the user wishes to store so that the user may access the web site when convenient to the user. The user actuates the select button 320 until the microphone icon appears in the function area 311 of the LCD 310. The user then actuates the first button 321 and begins speaking into the microphone 304. To identify the voice data as a website, the user will first says the word “website” and pauses before speaking the website to be stored. This identifies the subsequent voice data as a web address to the processing software. The user then speaks the web address, (e.g., gifts.com\products\pn123242) into the microphone 304. If the user wishes to record a relevant voice message regarding the website, the user then speaks the word “stop” and then speaks the desired message into the microphone 304 (e.g., “buy golf clubs for dad”). When the user is done speaking into the microphone 304, the user de-actuates the first button 321 to terminate recording.

The voice recorder is designed and functions as a conventional recording voice that is adapted to be communicatively coupled with a computer as is discussed below. In general, however, the speech is processed through a filter, amplifier, an analog-to-digital converter, and stored in memory (e.g., RAM). The command holder 300 also has the capability of recording voice data that is not associated with a web address. To do so, the user actuates the select button 320 until the microphone icon appears and records the voice message as just described.

When not recording audio, the LCD 310 displays the number of voice recordings stored (shown as “3” in FIG. 4A). The user may then delete or overwrite previously stored data or listen to stored voice data. To scroll to a particular stored set of data, the user actuates the select button 320 until the scroll icon appears in the function area 311 of the display 310. The user then actuates the first button 321 until the data index (e.g., 5) of the stored data of interest is displayed on the LCD 310. The number one (i.e., 1) represents an empty storage location so that the user may record a new message without overwriting a previously stored message. When a new message is stored, the data indexes of all the messages (including the just stored message) are incremented, thus leaving data index one empty. When the data storage device is full to capacity, the LCD will not display a data index of one, thus indicating the storage device is full. Alternately, the command holder 300 may be designed so that the highest number is always an empty data index except when the command holder memory is full—at which time the LCD displays visual indicia indicating memory is full.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Customizing broadcast transmissions to viewer preferences patent application.
###
monitor keywords

Browse recent Wounder Gmbh., LLC patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Customizing broadcast transmissions to viewer preferences or other areas of interest.
###


Previous Patent Application:
Authenticated content discovery
Next Patent Application:
Key derivation for secure communications
Industry Class:
Interactive video distribution systems
Thank you for viewing the Customizing broadcast transmissions to viewer preferences patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.78992 seconds


Other interesting Freshpatents.com categories:
Qualcomm , Schering-Plough , Schlumberger , Texas Instruments ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2535
Key IP Translations - Patent Translations

     SHARE
  
           

stats Patent Info
Application #
US 20120084805 A1
Publish Date
04/05/2012
Document #
13323253
File Date
12/12/2011
USPTO Class
725 28
Other USPTO Classes
International Class
04N7/16
Drawings
6


Your Message Here(14K)



Follow us on Twitter
twitter icon@FreshPatents

Wounder Gmbh., Llc

Browse recent Wounder Gmbh., LLC patents

Interactive Video Distribution Systems   Access Control Or Blocking   Of Specific Program (e.g., Based On Program Rating)