FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: April 14 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Device and method for wide-field and high resolution imaging of tissue

last patentdownload pdfimage previewnext patent


Title: Device and method for wide-field and high resolution imaging of tissue.
Abstract: A device for wide-field and high resolution imaging of an object surface includes first and second imaging modalities, a lens associated with the second imaging modality. The first imaging modality is high resolution with a first observation line. The second imaging modality is arranged in an image plane at a first angle with respect to an object plane and has a second observation line and a wider imaging field than the first imaging modality. The lens associated with the second imaging modality is arranged in a lens plane at a second angle with respect to the object plane, where the second angle being equal to about one-half of the first angle. The first and second imaging modalities are mutually arranged such that the first and second optical axes intersect at a point on the object plane. ...


Browse recent The General Hospital Corporation patents - Boston, MA, US
Inventors: Anna N. Yaroslavsky, Robert H. Webb, Richard R. Anderson
USPTO Applicaton #: #20120071764 - Class: 600476 (USPTO) - 03/22/12 - Class 600 
Surgery > Diagnostic Testing >Detecting Nuclear, Electromagnetic, Or Ultrasonic Radiation >Visible Light Radiation

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120071764, Device and method for wide-field and high resolution imaging of tissue.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATION

This application is a division of U.S. application Ser. No. 11/823,610, filed Jun. 28, 2007, now U.S. Pat. No. 8,045,263, which claims priority to U.S. Provisional Patent Application No. 60/818,200 filed Jun. 30, 2006. The entire contents of each of the aforementioned applications are hereby incorporated herein by this reference.

BACKGROUND OF THE INVENTION

This invention was made with Government support under Grant No. eB002423 awarded by the National Institutes of Health. The Government has certain rights in the invention.

Field of the Invention

The present invention relates to a device and method for wide-field and high resolution imaging. Particularly, the present invention is directed to a system having wide-field and high resolution imaging capability.

The present invention is particularly suitable for imaging skin cancer, e.g., as a rapid bedside guide to tumor excision. The invention is useful for providing enhanced imaging of epithelial tumors, inflammatory disorders, or other pathological conditions, including nonmelanoma skin cancer. However, the subject device and method may be used for imaging and analyzing surface, structural, spectral, functional, fluorescence, Raman, bio-chemical, polarization and other similar characteristics of any object when the combination of wide field imaging and high resolution is required.

Description of Related Art

Advances in the development of optical imaging modalities have facilitated efforts to employ these techniques for noninvasive detection and treatment guidance of different pathological conditions. In general, the turbidity of tissue creates major challenges for optical in vivo spectroscopy and imaging. However, reflectance and fluorescence imaging techniques, like multi-spectral polarized light macro-imaging and confocal microscopy are well suited for skin cancer detection and demarcation. Confocal reflectance microscopy was introduced to the field of dermatology in the 1990s. Since then, it has been used to study different skin disorders.

Confocal microscopy is a technique where the specimen is pointwise illuminated by a focused beam of light. An image is recorded by scanning the beam focus through a plane in the specimen, and the reflected light from the specimen is focused onto a small detector aperture. The light source, the illuminated spot and the detector aperture are placed in optically conjugated focal planes. “Optical sectioning” occurs as out-of-focal-plane back-scattered light is rejected by a pinhole placed in front of a detector. Optical sectioning makes it possible to record images of thin layers within tissue. Confocal microscopy allows imaging within turbid media with high resolution (lateral resolution of about 1 μm, and axial resolution (section thickness) of about 3-5 μm), which is comparable to histology. The major disadvantage of confocal microscopy as a detection and guidance tool for cancer surgery is its small field of view, which is typically, up to about 0.3 mm. To examine an entire suspected cancerous area using confocal microscopy (CM), a sequence of images must be captured and stitched together. This process takes time and motion artifacts may distort the resulting image.

Multi-spectral polarized light imaging (MSPLI) is a simple and inexpensive technique for skin tumor imaging. The technique provides the means to differentiate effectively between endogenous (blood, melanin, etc.) and exogenous (dye) chromophores absorbing in different spectral domains, and is capable of obtaining superficial images (at a resolution of about 3-50 μm-lateral, 5-0200 μm-axial in the visible spectral range) of thick tissue layers. Such imaging is relatively insensitive to small shifts in the position of the imaged object, and combination of the large field-of-view and sufficient lateral resolution enables rapid examination of large surfaces, thus facilitating tumor margin delineation. However, morphology of individual cells and fine structures cannot be resolved using MSPLI. Thus, the multi-spectral polarized light imaging approach can benefit from combination with a high-resolution technique, such as confocal reflectance microscopy, which can be used by a pathologist in the cases when high-resolution images of small suspicious areas are required. Such combination may become a powerful tool for cancer detection and demarcation.

SUMMARY

OF THE INVENTION

The purpose and advantages of the present invention will be set forth in and apparent from the description that follows. Additional advantages of the invention will be description and claims hereof, as well as from the appended drawings.

The present technology relates to a novel device that combines a wide-field, low-resolution imaging modality and a high-resolution, narrow-field imaging modality, which preferably share a common light source and hardware control unit. One preferred embodiment includes a combination of confocal microscopy with wide-field CCD (charge-coupled device) imaging. By combining these two imaging devices, a high resolution wide-field imaging is effectively achieved. CCD imaging, for example, the technique of multi-spectral polarized light imaging (MSPLI), enables rapid inspection of a superficial tissue layer over large surfaces, but does not provide information on cellular microstructure. Confocal microscopy (CM) allows imaging within turbid media with resolution comparable to that of histology, but suffers from a small field of view. Typically, pathologists use microscopes at low power and high power, to view the margins of pathology and cell features, respectively. Therefore, the present technology, which can combine, for example, MSPLI and CM can guide cancer surgery more rapidly, and at lower cost than conventional histopathology.

To achieve these and other advantages and in accordance with the purpose of the subject technology, as embodied, the subject technology includes a device for wide-field and high resolution imaging of an object surface includes first and second imaging modalities, a lens associated with the second imaging modality. The first imaging modality has a high resolution imaging means with a first observation line, such as an optical axis in the event that the imaging modality is optical. It will be understood that non-optical imaging modalities can also be used including but not limited to acoustic (e.g., ultrasonic), terahertz and the like, for example.

The second imaging modality is arranged in an image plane at a first angle with respect to an object plane and has a second observation line and a wider imaging field than the first imaging modality. The lens associated with the second imaging modality is arranged in a lens plane at a second angle with respect to the object plane, where the second angle being equal to about one-half of the first angle. The first and second imaging modalities are mutually arranged such that the first and second optical axes intersect at a point on the object plane.

The first imaging modality can include a confocal microscope including an objective lens, a multi-photon microscope, a high-resolution CCD imaging device or another high-resolution imaging device.

Devices in accordance with the present technology can be capable of adjusting to a first configuration, in which the second imaging modality is capable of capturing an image and/or to a second configuration, in which the first imaging modality is capable of capturing a high-resolution image. The first imaging modality can be capable of imaging both an object surface as well as beneath the object surface. The first and second imaging modalities can be supported by a supporting structure, such supporting structure providing rigidity, providing support to the device components, and/or enabling the device to be moved with respect to the object surface. The second modality and the lens can be pivotally supported by the device.

It is to be understood that both the foregoing general description and the following detailed description are exemplary and are intended to provide a non-limiting explanation of the subject technology.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with a color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

The accompanying drawings, which are incorporated in and constitute part of this specification, are included to illustrate and provide a further understanding of the method and system of the invention.

FIG. 1 is a schematic layout of a multimodal wide-field, high-resolution imaging system in accordance with the present technology.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Device and method for wide-field and high resolution imaging of tissue patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Device and method for wide-field and high resolution imaging of tissue or other areas of interest.
###


Previous Patent Application:
Ultrasound diagnostic apparatus
Next Patent Application:
Digital mapping system and method
Industry Class:
Surgery
Thank you for viewing the Device and method for wide-field and high resolution imaging of tissue patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.55968 seconds


Other interesting Freshpatents.com categories:
QUALCOMM , Monsanto , Yahoo , Corning , -g2-0.231
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120071764 A1
Publish Date
03/22/2012
Document #
13232151
File Date
09/14/2011
USPTO Class
600476
Other USPTO Classes
348 36, 348E05024
International Class
/
Drawings
4



Follow us on Twitter
twitter icon@FreshPatents