FreshPatents.com Logo
stats FreshPatents Stats
4 views for this patent on FreshPatents.com
2012: 4 views
Updated: August 11 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Systems, methods, and devices for reducing the pain of glucose monitoring and insulin adminstration in diabetic patients

last patentdownload pdfimage previewnext patent


Title: Systems, methods, and devices for reducing the pain of glucose monitoring and insulin adminstration in diabetic patients.
Abstract: The various embodiments disclosed herein are devices that deliver electrical stimulation and/or vibration stimulation to the surface of skin in proximity to insulin injections and/or glucose testing in order to decrease or eliminate the pain of these procedures. ...


Browse recent Innova Medical Design LLC patents - Minneapolis, MN, US
Inventors: Timothy O'Malley, Rommel P. Vallero
USPTO Applicaton #: #20120065487 - Class: 600365 (USPTO) - 03/15/12 - Class 600 
Surgery > Diagnostic Testing >Measuring Or Detecting Nonradioactive Constituent Of Body Liquid By Means Placed Against Or In Body Throughout Test >Glucose Measurement

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120065487, Systems, methods, and devices for reducing the pain of glucose monitoring and insulin adminstration in diabetic patients.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims the benefit under 35 U.S.C. §119(e) to U.S. Provisional Patent Application 61/380,409, filed Sep. 7, 2010, entitled “Systems and Methods for Reducing the Pain of Glucose Monitoring and Insulin Administration in Diabetic Patients,” and to U.S. Provisional Patent Application 61/497,662, filed Jun. 16, 2011, entitled “Devices, Systems, and Methods for Reducing the Pain of Glucose Monitoring and Insulin Administration in Diabetic Patients,” both of which are incorporated herein by reference in their entireties.

FIELD OF THE INVENTION

The embodiments disclosed herein relate to various methods and devices for reducing or eliminating pain of injections and other similar procedures performed on the skin, including the pain associated with blood glucose testing and insulin shot administration. Certain implementations relate to methods or devices that deliver stimulation in the form of vibration, electrical stimulation, or both to the patient.

BACKGROUND OF THE INVENTION

Diabetic patients often have to check their blood glucose levels multiple times per day. This is most commonly done using a sharp lancet device to create a small pinprick on a fingertip or other body part from which a drop of blood may be obtained for sampling. In addition, many diabetics require multiple daily doses of insulin given subcutaneously (typically in the abdominal wall, thighs or arms) in order to keep their blood sugars at a safe level. It has been shown that a significant number of diabetics are non-compliant with their diabetes treatment regimen mainly because of the pain involved. (Burge, Diabetes Care, August 2001, vol. 24, no. 8, 1502-1503) This noncompliance has been shown to double the risk of hospitalization in these patients resulting in almost double the medical costs. (Sokol, Medical Care, June 2005, Volume 43, Issue 6, pp: 521-530)

There is a need in the art for improved systems, methods, and devices for reducing or eliminating pain from injections and related procedures for treating diabetes.

BRIEF

SUMMARY

OF THE INVENTION

Discussed herein are various embodiments relating to methods, devices, and systems for reducing or eliminating pain related to treatment of diabetes, including pain from blood glucose testing and from treatment injections (such as, for example, insulin injections). The various embodiments include pain reduction or elimination using either electrical or vibration stimulation, or both. More specifically, certain embodiments relate to handheld devices that provide pain reduction in combination with either blood testing or treatment injections or both. Further embodiments relate to handheld devices that provide pain reduction for use with other commercially-available blood testing and diabetes treatment devices.

In Example 1, a combination blood testing and pain reduction device comprises a body, a lancet housing, a lancet, a first stimulation component, and a stimulation generating unit. The lancet housing is disposed at a distal end of the body and comprises an opening disposed at a distal end of the lancet housing. The lancet is disposed at least partially within the lancet housing and comprises a retracted position disposed within the lancet housing and a deployed position wherein at least a distal portion of the lancet extends out of the lancet housing through the opening. The first stimulation component is coupled to the distal end of the lancet housing and comprises an electrode configured to be capable of delivering at least one of electrical stimulation and vibration stimulation. The stimulation generating unit is disposed within the body and is configured to transmit at least one of electrical energy and vibration energy to the first stimulation component.

Example 2 relates to the device according to Example 1, and further comprising a controller operably coupled to the stimulation generating unit, the controller configured to control the stimulation generating unit.

Example 3 relates to the device according to Example 1, wherein the first stimulation component is a positionable stimulation component movably coupled to the distal end of the lancet housing. The positionable stimulation component is configured to be movable between a testing configuration and an administration configuration. Further, the positionable stimulation component in the testing configuration is positioned against the distal end of the lancet housing, and the positionable stimulation component in the administration configuration has a portion positioned away from the distal end of the lancet housing. In addition, the stimulation component in the administration configuration has a stimulation component opening defined in the stimulation component.

Example 4 relates to the device according to Example 1, wherein the first stimulation component is positioned against the distal end of the lancet housing and disposed at least partially around the opening in the lancet housing.

Example 5 relates to the device according to Example 1, wherein the first stimulation component comprises a removable stimulation component. The removable stimulation component comprises a removable testing stimulation component and a removable administration stimulation component. The removable testing stimulation component is coupleable with the distal end of the lancet housing and is positioned against the distal end of the lancet housing. The removable administration stimulation component is coupleable with the distal end of the lancet housing and has a portion positioned away from the distal end of the lancet housing. Further, the removable administration stimulation component has a stimulation component opening defined in the removable administration stimulation component.

Example 6 relates to the device according to Example 1, wherein the device is at least one of a glucose testing device, an auto lancet, an insulin auto needle injector, or an insulin pen.

Example 7 relates to the device according to Example 1 and further comprises a second stimulation component disposed along a bottom portion of the body.

Example 8 relates to the device according to Example 7 and further comprises a proximal end having a concave shape, whereby an optimal injection site is created by the second stimulation component adjacent to the concave shape of the proximal end.

Example 9 relates to the device according to Example 8 and further comprises a testing strip opening defined in the proximal end of the body, the testing strip opening configured to receive a testing strip.

Example 10 relates to the device according to Example 9 and further comprises a testing component operably coupled to the testing strip opening and a display operably coupled to the testing component.

Example 11 relates to the device according to Example 7, wherein the body comprises a rounded top portion configured to be easily grasped by a patient.

In Example 12, a combination blood testing, treatment administration, and pain reduction device comprises a cylindrical body, a lancet housing disposed at a distal end of the body, a lancet disposed at least partially within the lancet housing, a positionable stimulation component movably coupled to the distal end of the lancet housing, a stimulation generating unit disposed within the body, and a controller operably coupled to the stimulation generating unit. The lancet housing comprises an opening disposed at a distal end of the lancet housing. The lancet comprises a retracted position disposed within the lancet housing and a deployed position wherein at least a distal portion of the lancet extends out of the lancet housing through the opening. The positionable stimulation component comprises an electrode configured to be capable of delivering at least one of electrical stimulation and vibration stimulation, wherein the positionable stimulation component is configured to be movable between a testing configuration and an administration configuration. The positionable stimulation component in the testing configuration is positioned against the distal end of the lancet housing. In addition, the positionable stimulation component in the administration configuration has a portion positioned away from the distal end of the lancet housing, wherein the stimulation component in the administration configuration has a stimulation component opening defined in the stimulation component. The stimulation generating unit is configured to transmit at least one of electrical energy and vibration energy to the positionable stimulation component. The controller is configured to control the stimulation generating unit.

Example 13 relates to the device according to Example 12 and further comprises an actuation button disposed on a proximal end of the body, the actuation button configured to actuate the lancet and the stimulation generating unit.

Example 14 relates to the device according to Example 12, wherein the device is at least one of a glucose testing device, an auto lancet, an insulin auto needle injector, or an insulin pen.

In Example 15, a combination blood testing, treatment administration, and pain reduction device comprises a body, a lancet housing disposed at a distal end of the body, a lancet disposed at least partially within the lancet housing, a first stimulation component coupled to the distal end of the lancet housing, a second stimulation component disposed along a bottom portion of the body, a proximal end having a concave shape, a stimulation generating unit disposed within the body, and a controller operably coupled to the stimulation generating unit. The lancet housing comprises an opening disposed at a distal end of the lancet housing. The lancet comprises a retracted position disposed within the lancet housing and a deployed position wherein at least a distal portion of the lancet extends out of the lancet housing through the opening. The first stimulation component comprises an electrode configured to be capable of delivering at least one of electrical stimulation and vibration stimulation. An optimal injection site is created by the second stimulation component adjacent to the concave shape of the proximal end. The stimulation generating unit is configured to transmit at least one of electrical energy and vibration energy to the first and second stimulation components. The controller is configured to control the stimulation generating unit.

Example 16 relates to the device according to Example 15 and further comprises a first button operably coupled to the controller and the lancet, the first button configured to actuate the first stimulation component and the lancet.

Example 17 relates to the device according to Example 16 and further comprises a second button operably coupled to the controller, the second button configured to actuate the second stimulation component.

Example 18 relates to the device according to Example 15 and further comprises a testing strip opening defined in the proximal end of the body, the testing strip opening configured to receive a testing strip.

Example 19 relates to the device according to Example 18 and further comprises a testing component operably coupled to the testing strip opening and a display operably coupled to the testing component.

Example 20 relates to the device according to Example 15, wherein the body comprises a rounded top portion configured to be easily grasped by a patient.

While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a side view of a pain reduction device, according to one embodiment.

FIG. 2A is a perspective view of a portion of a pain reduction device, according to another embodiment.

FIG. 2B is a perspective view of a portion of the device of FIG. 2A, according to one embodiment.

FIG. 3 is a side view of a pain reduction device, according to a further embodiment.

FIG. 4 is a perspective view of a pain reduction device, according to another embodiment.

FIG. 5 is a perspective view of the underside of the device of FIG. 4, according to one embodiment.

FIG. 6 is a perspective view of the use of the device of FIG. 4 with an insulin needle and syringe, according to one embodiment.

FIG. 7 is a perspective view of the device of FIG. 4 in use drawing blood from a finger, according to one embodiment.

FIG. 8 is a top view of the device of FIG. 4, according to one embodiment.

FIG. 9 is a side view of the distal end of the device of FIG. 4, according to one embodiment.

FIG. 10 is a side view of the device of FIG. 4, according to one embodiment.

FIG. 11 is a bottom view of the device of FIG. 4, according to one embodiment.

FIG. 12 is a perspective view of a pain reduction device in use during blood glucose testing, according to another embodiment.

FIG. 13 is a perspective view of the device of FIG. 12, according to one embodiment.

FIG. 14 is a perspective view of a pain reduction device, according to a further embodiment.

FIG. 15 is a perspective view of a pain reduction device, according to yet another embodiment.

FIG. 16A is a perspective view of a pain reduction device in use, according to another embodiment.

FIG. 16B is a perspective view of the underside of the pain reduction device of FIG. 16A, according to one embodiment.

FIG. 16C is a perspective view of the pain reduction device of FIG. 16A in use, according to one embodiment.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Systems, methods, and devices for reducing the pain of glucose monitoring and insulin adminstration in diabetic patients patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Systems, methods, and devices for reducing the pain of glucose monitoring and insulin adminstration in diabetic patients or other areas of interest.
###


Previous Patent Application:
Device, system and method for monitoring and communicating biometric data of a diver
Next Patent Application:
Ophthalmic analysis system for measuring the intraocular pressure in the eye
Industry Class:
Surgery
Thank you for viewing the Systems, methods, and devices for reducing the pain of glucose monitoring and insulin adminstration in diabetic patients patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.74731 seconds


Other interesting Freshpatents.com categories:
Tyco , Unilever , 3m

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2--0.7036
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120065487 A1
Publish Date
03/15/2012
Document #
13227223
File Date
09/07/2011
USPTO Class
600365
Other USPTO Classes
600583, 604112
International Class
/
Drawings
9



Follow us on Twitter
twitter icon@FreshPatents