stats FreshPatents Stats
4 views for this patent on
2012: 4 views
Updated: April 14 2014
newTOP 200 Companies filing patents this week

    Free Services  

  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • View the last few months of your Keyword emails.

  • Patents sorted by company.


Follow us on Twitter
twitter icon@FreshPatents

Novel bacillus thuringiensis gene with lepidopteran activity

last patentdownload pdfimage previewnext patent

Title: Novel bacillus thuringiensis gene with lepidopteran activity.
Abstract: The invention provides nucleic acids, and variants and fragments thereof, obtained from strains of Bacillus thuringiensis encoding polypeptides having pesticidal activity against insect pests, including Lepidoptera. Particular embodiments of the invention provide isolated nucleic acids encoding pesticidal proteins, pesticidal compositions, DNA constructs, and transformed microorganisms and plants comprising a nucleic acid of the embodiments. These compositions find use in methods for controlling pests, especially plant pests. ...

Browse recent Pioneer Hi-bred International, Inc. patents - Johnston, IA, US
Inventors: Andre R. Abad, Hua Dong, Sue B. Lo, Xiaomei Shi
USPTO Applicaton #: #20120065127 - Class: 514 45 (USPTO) - 03/15/12 - Class 514 

view organizer monitor keywords

The Patent Description & Claims data below is from USPTO Patent Application 20120065127, Novel bacillus thuringiensis gene with lepidopteran activity.

last patentpdficondownload pdfimage previewnext patent


This application is a divisional of co-pending U.S. application Ser. No. 12/616,298, filed on Nov. 11, 2009, which claims the benefit of U.S. Provisional Application Ser. No. 61/146,676, filed Jan. 23, 2009, the content of which is herein incorporated by reference in its entirety.


The present invention relates to naturally-occurring and recombinant nucleic acids obtained from novel Bacillus thuringiensis genes that encode pesticidal polypeptides characterized by pesticidal activity against insect pests. Compositions and methods of the invention utilize the disclosed nucleic acids, and their encoded pesticidal polypeptides, to control plant pests.


Insect pests are a major factor in the loss of the world\'s agricultural crops. For example, armyworm feeding, black cutworm damage, or European corn borer damage can be economically devastating to agricultural producers. Insect pest-related crop loss from European corn borer attacks on field and sweet corn alone has reached about one billion dollars a year in damage and control expenses.

Traditionally, the primary method for impacting insect pest populations is the application of broad-spectrum chemical insecticides. However, consumers and government regulators alike are becoming increasingly concerned with the environmental hazards associated with the production and use of synthetic chemical pesticides. Because of such concerns, regulators have banned or limited the use of some of the more hazardous pesticides. Thus, there is substantial interest in developing alternative pesticides.

Biological control of insect pests of agricultural significance using a microbial agent, such as fungi, bacteria, or another species of insect affords an environmentally friendly and commercially attractive alternative to synthetic chemical pesticides. Generally speaking, the use of biopesticides presents a lower risk of pollution and environmental hazards, and biopesticides provide greater target specificity than is characteristic of traditional broad-spectrum chemical insecticides. In addition, biopesticides often cost less to produce and thus improve economic yield for a wide variety of crops.

Certain species of microorganisms of the genus Bacillus are known to possess pesticidal activity against a broad range of insect pests including Lepidoptera, Diptera, Coleoptera, Hemiptera, and others. Bacillus thuringiensis (Bt) and Bacillus papilliae are among the most successful biocontrol agents discovered to date. Insect pathogenicity has also been attributed to strains of B. larvae, B. lentimorbus, B. sphaericus (Harwook, ed., ((1989) Bacillus (Plenum Press), 306) and B. cereus (WO 96/10083). Pesticidal activity appears to be concentrated in parasporal crystalline protein inclusions, although pesticidal proteins have also been isolated from the vegetative growth stage of Bacillus. Several genes encoding these pesticidal proteins have been isolated and characterized (see, for example, U.S. Pat. Nos. 5,366,892 and 5,840,868).

Microbial insecticides, particularly those obtained from Bacillus strains, have played an important role in agriculture as alternatives to chemical pest control. Recently, agricultural scientists have developed crop plants with enhanced insect resistance by genetically engineering crop plants to produce pesticidal proteins from Bacillus. For example, corn and cotton plants have been genetically engineered to produce pesticidal proteins isolated from strains of Bt (see, e.g., Aronson (2002) Cell Mol. Life. Sci. 59(3):417-425; Schnepf et al. (1998) Microbiol Mol Biol Rev. 62(3):775-806). These genetically engineered crops are now widely used in American agriculture and have provided the farmer with an environmentally friendly alternative to traditional insect-control methods. In addition, potatoes genetically engineered to contain pesticidal Cry toxins have been sold to the American farmer. While they have proven to be very successful commercially, these genetically engineered, insect-resistant crop plants provide resistance to only a narrow range of the economically important insect pests.

Accordingly, there remains a need for new Bt toxins with a broader range of insecticidal activity against insect pests, e.g., toxins which are active against a greater variety of insects from the order Lepidoptera. In addition, there remains a need for biopesticides having activity against a variety of insect pests and for biopesticides which have improved insecticidal activity.



Compositions and methods are provided for impacting insect pests. More specifically, the embodiments of the present invention relate to methods of impacting insects utilizing nucleotide sequences encoding insecticidal peptides to produce transformed microorganisms and plants that express a insecticidal polypeptide of the embodiments. Such pests include agriculturally significant pests, such as, for example: European corn borer (Ostrinia nubilalis) and Southwestern corn borer (Diatraea grandiosella). In some embodiments, the nucleotide sequences encode polypeptides that are pesticidal for at least one insect belonging to the order Lepidoptera.

The embodiments provide a nucleic acid and fragments and variants thereof which encode polypeptides that possess pesticidal activity against insect pests (e.g. SEQ ID NO: 1 encoding SEQ ID NO: 2). The wild-type (e.g., naturally occurring) nucleotide sequence of the embodiments, which was obtained from Bt, encodes a novel insecticidal peptide. The embodiments further provide fragments and variants of the disclosed nucleotide sequence that encode biologically active (e.g., insecticidal) polypeptides.

The embodiments further provide isolated pesticidal (e.g., insecticidal) polypeptides encoded by either a naturally occurring, or a modified (e.g., mutagenized or manipulated) nucleic acid of the embodiments. In particular examples, pesticidal proteins of the embodiments include fragments of full-length proteins and polypeptides that are produced from mutagenized nucleic acids designed to introduce particular amino acid sequences into the polypeptides of the embodiments. In particular embodiments, the polypeptides have enhanced pesticidal activity relative to the activity of the naturally occurring polypeptide from which they are derived.

The nucleic acids of the embodiments can also be used to produce transgenic (e.g., transformed) monocot or dicot plants that are characterized by genomes that comprise at least one stably incorporated nucleotide construct comprising a coding sequence of the embodiments operably linked to a promoter that drives expression of the encoded pesticidal polypeptide. Accordingly, transformed plant cells, plant tissues, plants, and seeds thereof are also provided.

In a particular embodiment, a transformed plant can be produced using a nucleic acid that has been optimized for increased expression in a host plant. For example, one of the pesticidal polypeptides of the embodiments can be back-translated to produce a nucleic acid comprising codons optimized for expression in a particular host, for example a crop plant such as a corn (Zea mays) plant. Expression of a coding sequence by such a transformed plant (e.g., dicot or monocot) will result in the production of a pesticidal polypeptide and confer increased insect resistance to the plant. Some embodiments provide transgenic plants expressing pesticidal polypeptides that find use in methods for impacting various insect pests.

The embodiments further include pesticidal or insecticidal compositions containing the insecticidal polypeptides of the embodiments, and can optionally comprise further insecticidal peptides. The embodiments encompass the application of such compositions to the environment of insect pests in order to impact the insect pests.



The embodiments of the invention are drawn to compositions and methods for impacting insect pests, particularly plant pests. More specifically, the isolated nucleic acid of the embodiments, and fragments and variants thereof, comprise nucleotide sequences that encode pesticidal polypeptides (e.g., proteins). The disclosed pesticidal proteins are biologically active (e.g., pesticidal) against insect pests such as, but not limited to, insect pests of the order Lepidoptera. Insect pests of interest include, but are not limited to: Ostrinia nubilalis (European corn borer); Papaipema nebris (common stalk borer); and Diatraea grandiosella (Southwestern corn borer).

The compositions of the embodiments comprise isolated nucleic acids, and fragments and variants thereof, that encode pesticidal polypeptides, expression cassettes comprising nucleotide sequences of the embodiments, isolated pesticidal proteins, and pesticidal compositions. Some embodiments provide modified pesticidal polypeptides characterized by improved insecticidal activity against Lepidopterans relative to the pesticidal activity of the corresponding wild-type protein. The embodiments further provide plants and microorganisms transformed with these novel nucleic acids, and methods involving the use of such nucleic acids, pesticidal compositions, transformed organisms, and products thereof in impacting insect pests.

The nucleic acids and nucleotide sequences of the embodiments may be used to transform any organism to produce the encoded pesticidal proteins. Methods are provided that involve the use of such transformed organisms to impact or control plant pests. The nucleic acids and nucleotide sequences of the embodiments may also be used to transform organelles such as chloroplasts (McBride et al. (1995) Biotechnology 13: 362-365; and Kota et al. (1999) Proc. Natl. Acad. Sci. USA 96: 1840-1845).

The embodiments further relate to the identification of fragments and variants of the naturally-occurring coding sequence that encode biologically active pesticidal proteins. The nucleotide sequences of the embodiments find direct use in methods for impacting pests, particularly insect pests such as pests of the order Lepidoptera. Accordingly, the embodiments provide new approaches for impacting insect pests that do not depend on the use of traditional, synthetic chemical insecticides. The embodiments involve the discovery of naturally-occurring, biodegradable pesticides and the genes that encode them.

The embodiments further provide fragments and variants of the naturally occurring coding sequence that also encode biologically active (e.g., pesticidal) polypeptides. The nucleic acids of the embodiments encompass nucleic acid or nucleotide sequences that have been optimized for expression by the cells of a particular organism, for example nucleic acid sequences that have been back-translated (i.e., reverse translated) using plant-preferred codons based on the amino acid sequence of a polypeptide having enhanced pesticidal activity. The embodiments further provide mutations which confer improved or altered properties on the polypeptides of the embodiments. See, e.g., copending U.S. application Ser. Nos. 10/606,320, filed Jun. 25, 2003, and 10/746,914, filed Dec. 24, 2003.

Download full PDF for full patent description/claims.

Advertise on - Rates & Info

You can also Monitor Keywords and Search for tracking patents relating to this Novel bacillus thuringiensis gene with lepidopteran activity patent application.
monitor keywords

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Novel bacillus thuringiensis gene with lepidopteran activity or other areas of interest.

Previous Patent Application:
Pharmaceutical compositions containing antifungal peptides
Next Patent Application:
Crystalline forms of the di-sodium salt of n-(5-chlorosalicyloyl)-8-aminocaprylic acid
Industry Class:
Drug, bio-affecting and body treating compositions
Thank you for viewing the Novel bacillus thuringiensis gene with lepidopteran activity patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 1.1161 seconds

Other interesting categories:
Tyco , Unilever , 3m -g2--0.5501

FreshNews promo

stats Patent Info
Application #
US 20120065127 A1
Publish Date
Document #
File Date
Other USPTO Classes
International Class

Bacillus Thuringiensis

Follow us on Twitter
twitter icon@FreshPatents