FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: April 14 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

AdPromo(14K)

Follow us on Twitter
twitter icon@FreshPatents

Blood perfusion device delivery system

last patentdownload pdfimage previewnext patent


Title: Blood perfusion device delivery system.
Abstract: A delivery system deploys a prosthesis for open surgical repair of a body vessel. The system includes a sleeve to retain segments of a prosthesis in a compressed configuration and retraction members. The sleeve has outer segments associated with each end of the prosthesis. Retraction of the retraction members removes the outer segments of the sleeve from the prosthesis outer ends to allow for expansion of the outer ends of the prosthesis in an outside-in direction. The system can include a handle and an actuation member movably attached to the handle. The actuation member is coupled to the sleeve outer segments so that movement of the actuation member corresponds to removal of the sleeve. The system can include elements to retain the sleeve outer segments to the actuation member and to redirect the retraction members to a direction different from the axis of the prosthesis. ...


Browse recent Cook Medical Technologies LLC patents - Bloomington, IN, US
Inventors: Ram H. Paul, JR., Jessica L. Burke
USPTO Applicaton #: #20120035706 - Class: 623 112 (USPTO) - 02/09/12 - Class 623 
Prosthesis (i.e., Artificial Body Members), Parts Thereof, Or Aids And Accessories Therefor > Arterial Prosthesis (i.e., Blood Vessel) >Stent Combined With Surgical Delivery System (e.g., Surgical Tools, Delivery Sheath, Etc.) >Expandable Stent With Constraining Means

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20120035706, Blood perfusion device delivery system.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/370,304, filed Aug. 3, 2010, which is incorporated herein by reference in its entirety.

BACKGROUND

The preferred embodiments described herein relate generally to medical device delivery systems for open surgical repair of body structures that define body lumens. More particularly, they relate to medical device delivery systems for repairing damaged body structures and gaining hemostasis or fluid stability during emergency open surgical medical procedures.

Trauma physicians frequently encounter patients having traumatic injury to a body vessel, such as lacerated vessels or even transected vessels, resulting from gunshots, knife wounds, motor vehicle accidents, explosions, etc. Significant damage to a body vessel may expose a patient to deleterious conditions such as the loss of a limb, loss of function of a limb, increased risk of stroke, impairment of neurological functions, and compartment syndrome, among others. Particularly severe cases of vascular injury and blood loss may even result in death. In such severe situations, the immediate goal is to obtain hemostasis while maintaining perfusion of adequate blood flow to critical organs, such as the brain, liver, kidneys, and heart.

Examples of treatment that are commonly performed by trauma physicians to treat body vessel injuries include the clamping of the vessel with a hemostat, the use of a balloon tamponade, the ligation of the damaged vessel at or near the site of injury, or the insertion of one or more temporary shunts. However, conventional surgical repair is generally difficult with such actively bleeding, moribund patients. In many instances, there is simply not enough time to repair the body vessel adequately by re-approximating and suturing the body vessel. In many situations, the trauma physician will simply insert a temporary shunt (such as a Pruitt-Inahara Shunt) into the vessel. However, use of temporary shunts has been linked to the formation of clots. This may require returning the patient to the operating room for treatment and removal of the clots, often within about 36 to 48 hours of the original repair. Since shunts are generally placed as a temporary measure to restore blood flow and stop excessive blood loss, the shunt is typically removed when the patient has stabilized (generally a few days later) by a specialized vascular surgeon. After removal, the vascular surgeon will replace the shunt with a vascular graft, such as a fabric graft that is sewn into place. With respect to ligation, ligation of the damaged blood vessel may result in muscle necrosis, loss of muscle function, or a potential limb loss or death.

Due to the nature of the body vessel injury that may be encountered, the insertion of shunts or ligation of a blood vessel, for example, often requires that such treatments be rapidly performed at great speed, and with a high degree of physician skill. Such treatments may occupy an undue amount of time and attention of the trauma physician at a time when other pressing issues regarding the patient\'s treatment require immediate attention. In addition, the level of particularized skill required to address a vascular trauma may exceed that possessed by the typical trauma physician. In particular, traumatic episodes to the vessel may require the skills of a physician specially trained to address the particular vascular trauma, and to stabilize the patient in the best manner possible under the circumstances of the case.

Some open surgical techniques utilize sutures to affix damaged tissue portions surrounding fittings that have been deployed with the vessel, which requires the trauma physician to take time to tie the sutures properly. Although in modern medicine sutures can be tied in relatively rapid fashion, any step in a repair process that occupies physician time in an emergency situation is potentially problematic. In addition, the use of sutures to affix the vessel to the fitting compresses the tissue of the vessel against the fitting. Compression of tissue may increase the risk of necrosis of the portion of the vessel tissue on the side of the suture remote from the blood supply. When present, necrosis of this portion of the vessel tissue may result in the tissue separating at the point of the sutures. In this event, the connection between the vessel and the fitting may eventually become weakened and subject to failure. If the connection fails, the device may disengage from the vessel. Therefore, efforts continue to develop techniques that reduce the physician time required for such techniques, so that this time can be spent on other potentially life-saving measures, and the blood flow is more quickly restored and damage caused by lack of blood flow is minimized

Trauma physicians generally find it difficult to manipulate a prosthesis for insertion into a body vessel that has been traumatically injured. For example, one difficulty arises from the trauma physician trying to limit the size of the opening created for gaining access to the injured vessel so that such opening requiring healing is as small as possible. Another difficulty is that the injured vessel can be anywhere in the body, having different surrounding environments of bone structure, muscle tissue, blood vessels, and the like, which makes such obstructions difficult to predict in every situation and leaves the trauma physician working with an even further limited access opening. Another potential consideration is the amount of body vessel removed during a transection. The goal would be to remove a portion of the body vessel as small as possible. Yet, a small portion removed from the vessel leaves such a small space between the two vessel portions, thereby making it difficult to introduce the prosthesis between the two vessel portions.

Thus, what is needed is a delivery device for delivering a prosthesis for use in repair of an injured body vessel, such as an artery or a vein, (and in particular a transected vessel) during emergency open surgery. It would be desirable if such delivery device was easy for a trauma physician to use, and can rapidly introduce a prosthesis into a body vessel, thereby providing a conduit for blood or fluid within the injured body vessel.

SUMMARY

The problems of the prior art are addressed by the features of the following examples. In one aspect, a delivery system can include a sleeve and first and second retraction members. The sleeve can be configured to retain segments of a prosthesis in a compressed configuration. The sleeve can have a first outer segment and a second outer segment associated with a first outer end and a second outer end of the prosthesis, respectively. The first retraction member can be coupled to the first outer segment of the sleeve, and the second retraction member can be coupled to the second outer segment of the sleeve. In response to retraction of the first and second retraction members, the first and second outer segments of the sleeve are removed from the corresponding outer ends of the prosthesis. Such removal allows for the expansion of the outer ends of the prosthesis in an outside-in direction.

In another aspect, the delivery system can include a handle and an actuation member movably attached to the handle. An assembly can be disposed at a distal end of the handle. The assembly can include a sleeve configured to retain segments of a prosthesis in a compressed configuration. The sleeve can have a first outer segment and a second outer segment that are associated with a first outer end and a second outer end of the prosthesis, respectively. A first retraction member can be coupled between the first outer segment of the sleeve and the actuation member, and a second retraction member can be coupled between the second outer segment of the sleeve and the actuation member. In response to movement of the actuation member relative to the prosthesis from a first position to a second position, the first and second outer segments of the sleeve are removed from the corresponding outer ends of the prosthesis. This removal allows for the expansion of the outer ends of the prosthesis in an outside-in direction. The handle may include a guiding member to redirect the retraction members from a direction generally along the longitudinal axis to a direction different from the longitudinal axis, such as along the translational axis of the actuation member, which is generally perpendicular to the longitudinal axis. The actuation member may include a retaining member configured to removably attach with each of the retraction members.

Further, in another aspect, a method of open surgical repair of a body vessel is provided. The method can include one or more of the following steps, including inserting a first outer end of a prosthesis in a first vessel portion of a body vessel. The first outer end of the prosthesis can be retained in a compressed configuration by a sleeve portion. A second outer end of the prosthesis can be inserted in a second vessel portion. The second outer end of the prosthesis can be retained in a compressed configuration by a sleeve portion. The sleeve portions can be composed of a single sleeve or multiple sleeves. Sleeve portions can be removed from the respective first and second outer ends of the prosthesis. The first and second outer ends of the prosthesis can be allowed to move to an expanded configuration for engagement with the corresponding vessel portion of the body vessel. In one example, the sleeve portions can be removed with application of an activation agent configured to rapidly weaken or to dissolve the sleeve portions.

BRIEF DESCRIPTIONS OF THE DRAWINGS

FIG. 1A is an elevation view of an example delivery system having a prosthesis retained in a compressed configuration by a removable sleeve.

FIG. 1B is an end view of the system of FIG. 1A.

FIGS. 2A-2B are elevation views of the system FIG. 1A, depicting operation of the system for removal of the sleeve from the prosthesis.

FIG. 3A is a perspective view of an example delivery system, and in particular, a system for use with the delivery system of FIG. 1A.

FIG. 3B is a cross-sectional view of the system of FIG. 3A taken along line 3B-3B.

FIG. 3C is a perspective view of a distal end of the system of FIG. 3A, depicting a guiding element.

FIG. 3D is a cross-sectional view of the system of FIG. 3C taken along line 3D-3D.

FIG. 4A is a perspective view of a partial distal end of the system of FIG. 3A, depicting a handle body with a sharp edge.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Blood perfusion device delivery system patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Blood perfusion device delivery system or other areas of interest.
###


Previous Patent Application:
Truncated conical heart valve stent with anchoring threads and methods of use
Next Patent Application:
Deployment device for placement of multiple intraluminal surgical staples
Industry Class:
Prosthesis (i.e., artificial body members), parts thereof, or aids and accessories therefor
Thank you for viewing the Blood perfusion device delivery system patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.5942 seconds


Other interesting Freshpatents.com categories:
Tyco , Unilever , 3m -g2--0.7675
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20120035706 A1
Publish Date
02/09/2012
Document #
13197074
File Date
08/03/2011
USPTO Class
623/112
Other USPTO Classes
International Class
61F2/84
Drawings
7



Follow us on Twitter
twitter icon@FreshPatents