Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next →
← Previous

Apparatus and methods for production of biodiesel




Title: Apparatus and methods for production of biodiesel.
Abstract: A photobioreactor includes a cultivation zone configured to contain a liquid culture medium and facilitate growth of a microalgae biomass, a plurality of parallel edge-lit light transmitting devices mounted within the cultivation zone, and a collection zone oriented in relation to the cultivation zone such that at least a portion of the liquid culture medium and microalgae from the cultivation zone may be periodically harvested. Methods for illuminating algae, for dissolving materials into an algae medium, for extracting oil from algae, and for producing biodiesel from algal oil are also provided. ...

USPTO Applicaton #: #20110275140
Inventors: Joe Mccall


The Patent Description & Claims data below is from USPTO Patent Application 20110275140, Apparatus and methods for production of biodiesel.

CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a nonprovisional of, and claims the benefit of priority from, U.S. Provisional Patent Application No. 60/885,361 filed Jan. 17, 2007, the entire content of which is incorporated herein by reference for all purposes.

BACKGROUND

- Top of Page


OF THE INVENTION

Embodiments of the present invention involve techniques for generating renewable fuel, and in particular for producing biodiesel from algae.

There is considerable interest in the development of renewable energy sources to replace petroleum-based fuels. It has been discovered that certain algae have a large oil or lipid content, and thus provide a source for the production of biodiesel. In some cases, algae may contain up to 80% oil by weight. However, there is a lack of efficient and cost-effective algal biomass production systems. Open pond technology is often expensive and susceptible to contamination. Current closed photobioreactors using fiber optic light transmission can be prohibitively expensive.

Therefore, a need exists for improved devices and methods for generating biodiesel from algae. Preferably, such techniques would provide sufficient illumination to algae cultures to support growth. Further, these approaches should provide the required nutrients and gases to support algal growth. These techniques should also provide for the removal of oil from algae cultures. At least some of these objectives will be met by embodiments of the present invention.

BRIEF

SUMMARY

- Top of Page


OF THE INVENTION

Biodiesel and other alternative fuels can be produced from algal oil. Advantageously, embodiments of the present invention provide improved algae culture systems and methods. An exemplary photobioreactor includes a cultivation zone, a collection zone, and a heat sink. The photobioreactor can be in operative association with an agitator and an aggregator. Algae cultures can be grown, harvested, and processed to extract algal oil therefrom. Biodiesel can be produced from the algal oil sustainably, affordably, and on a large scale. Closed systems can provide increased efficiency and cost effectiveness, and reduce the opportunity for contamination.

In a first aspect, embodiments of the present invention provide a method for illuminating algae. The method can include concentrating a stream of light, transmitting the concentrated stream of light to a first portion of a diffusing member, diffusing the concentrated stream of light with the diffusing member, radiating the diffused stream of light from a second portion of the diffusing member, and illuminating the algae with the diffused stream of light. In some cases, the diffusing member comprises a diffusing plate having diffuser particles embedded therein. Relatedly, the diffusing member may include an edge-lit acrylic polymer sheet. The stream of light can be concentrated with a tandem compound parabolic concentrator, a linear Fresnel lens, or the like. In another aspect, embodiments of the present invention provide a method of extracting an algal oil from an algae. The method can include placing the algae in a space between a rotor and a housing, generating relative rotational movement between the rotor and the housing so as to agitate the algae, breaking a cell wall of the algae to allow algal oil to release from the algae into a suspension, flocculating the suspension with a standing sonic wave to isolate the algal oil and pulp, and removing the algal oil and pulp from the suspension. In some aspects, the method may include producing a biodiesel fuel from the algal oil. In another aspect, embodiments of the present invention provide a method of introducing carbon dioxide into an algae suspension. The method can include, for example, transferring the algae suspension from a photobioreactor to an agitation device, and introducing carbon dioxide into the algae suspension with the agitation device. Any of a variety of nutrients or gasses can be introduced into an algae suspension using the agitation device.

In another aspect, embodiments of the present invention provide a photobioreactor for growing and processing an algae culture. The photobioreactor can include a cultivation zone configured to contain a liquid culture medium and facilitate growth of a microalgae biomass, a plurality of parallel edge-lit, light emitting devices mounted within the cultivation zone and extending in a first direction. Each light-emitting device can have a light concentration surface to direct light into the light emitting device. The photobioreactor may also include a collection zone oriented in relation to the cultivation zone such that at least a portion of the liquid culture medium and microalgae from the cultivation zone may be periodically harvested. In some cases, the cultivation zone has a rectangular configuration with a first and a second pair of opposite sidewalls. The light-emitting devices may be positioned so as to extend between the first pair of sidewalls at a predetermined spacing. In some cases, each light emitting device further include or be in operative association with at least one cleaning element that runs along an outer surface of the light emitting device, for cleaning the surface of the light emitting device. The cleaning element may include a brushing apparatus, a scraping apparatus, or the like. The light concentrating surface may be a linear Fresnel lens, a compound parabolic concentrator, or the like. The collection zone can have a rectangular configuration with a first and second pair of opposite sidewalls, can be positioned below the cultivation zone, and can have a total volume sufficient to harvest at least half of the volume of the cultivation zone at periodic intervals. In some aspects, the photobioreactor may have a zone for recovering heat from the cultivation zone, and for cooling the same.

In yet another aspect, embodiments of the present invention provide a culture unit for cultivating microalgae. The culture unit can include, for example, a photobioreactor, a hydrodynamic separation zone in fluid communication with the photobioreactor, and a flocculation tank configured so as to receive material from the separation zone for separation of a biofuel from the microalgae biomass. In some aspects, the hydrodynamic separation zone includes a cavitation mixer capable of separating at least a portion of the microalgae biomass and liquid culture medium into a solid phase containing the solid components of the microalgae and at least one liquid phase. A still further aspect of the present invention provides a method for producing a biofuel. The method may include growing an algae in a cultivation zone of a photobioreactor, transferring the algae from the cultivation zone to a collection zone of the photobioreactor, transferring the algae to an agitator, disrupting the algae to release algal oil therefrom, transferring the disrupted algae and algal oil from the agitator to an aggregator, flocculating the disrupted algae and algal oil with the aggregator, allowing the algal oil to separate from the disrupted algae, and collecting the algal oil and converting the algal oil to the biodiesel. In some cases, the process of growing the algae can include concentrating a stream of light, transmitting the concentrated stream of light to a first portion of a diffusing member, diffusing the concentrated stream of light with the diffusing member, radiating the diffused stream of light from a second portion of the diffusing member, and illuminating the algae with the diffused stream of light. In some cases, the process of disrupting the algae can include placing the algae in a space between a rotor and a housing, generating relative rotational movement between the rotor and the housing so as to agitate the algae, and breaking a cell wall of the algae to allow algal oil to release from the algae. The method may also include introducing carbon dioxide into an algae medium with the agitator.

In one aspect, embodiments of the present invention encompass methods for illuminating an algae. Exemplary embodiments include concentrating a stream of light, transmitting the stream of light to an illuminator having a first surface and a second surface opposite the first surface, transmitting the stream of light within the illuminator between the first and second surface to a reflector disposed between the first surface and the second surface, radiating the stream of light through either the first surface or the second surface of the illuminator, and illuminating the algae with the stream of light. In some cases, the stream of light can be concentrated with a light concentrator having an aperture, and the stream of light can be transmitted through the aperture of the light concentrator to the illuminator. Optionally, the stream of light can be concentrated with a parabolic concentrator, such as a compound parabolic concentrator.

In another aspect, embodiments of the present invention include methods of extracting an algal oil from an algae cultivated in a photobioreactor. Exemplary methods include cultivating the algae in a photobioreactor, placing the algae in a space between a rotor and a housing, generating relative rotational movement between the rotor and the housing so as to agitate the algae, breaking a cell wall of the algae to allow algal oil to release from the algae into a suspension, flocculating the suspension with a standing wave to isolate the algal oil from a pulp comprising the cell wall, and removing the algal oil and the pulp from the suspension. In some cases, the rotor is disposed at least partially within the housing in a concentric arrangement, and the step of generating relative rotational movement between the rotor and the housing comprises creating cavitation in the space between the rotor and the housing to agitate the algae.

In a further aspect, embodiments of the present invention include methods of extracting an algal oil from an algae cultivated in a photobioreactor. Exemplary methods include cultivating or growing an algae in a photobioreactor, placing the algae in an agitator, breaking a cell wall of the algae with the agitator to allow algal oil to release from the algae into a suspension, transferring the suspension from the agitator to an aggregation tank, creating a standing sonic wave in the suspension contained within the aggregation tank with a standing sonic wave generator, aggregating a pulp comprising the cell wall at a pressure node formed by the standing sonic wave, and allowing the pulp to settle toward the bottom of the aggregation tank, separate from the algal oil. In some embodiments, methods include removing the algal oil through a first passage disposed toward a top portion of the aggregation tank. Methods may also include removing the pulp through a second passage disposed toward a bottom portion of the aggregation tank.

In yet another aspect, embodiments of the present invention include methods of extracting an algal oil from an algae. Exemplary methods include placing the algae in a space between a rotor and a housing, where the rotor is disposed at least partially within the housing in a concentric arrangement, and generating relative rotational movement between the rotor and the housing so as to create cavitation in the space between the rotor and the housing and agitate the algae. Methods may also include breaking a cell wall of the algae to allow algal oil to release from the algae into a suspension, and transferring the suspension to an aggregation tank, where the suspension includes the algal oil and the cell wall. Further, methods may include creating a standing sonic wave in the suspension with a standing sonic wave generator, aggregating a pulp, which may include the cell wall, at a pressure node, and allowing the pulp to settle toward the bottom of the aggregation tank, separate from the algal oil. Methods may include removing the algal oil through a first passage disposed toward a top portion of the aggregation tank, removing the pulp through a second passage disposed toward a bottom portion of the aggregation tank, transferring a volume comprising at least a portion of the suspension remaining in the aggregation tank to the space between the rotor and the housing, and infusing the volume with carbon dioxide and nutrients via cavitation.

In some aspects, embodiments of the present invention encompass photobioreactors for growing or cultivating a microalgae biomass. An exemplary photobioreactor can include a cultivation zone configured to contain a liquid culture medium and facilitate growth of the microalgae biomass, and a light concentrator mounted above the cultivation zone. The light concentrator can have a light concentration surface that concentrates a stream of light and directs the stream of light toward an illuminator. The illuminator may include a first surface and a second surface opposite the first surface, and a reflector disposed between the first surface and the second surface that reflects the stream of light through the first surface or the second surface of the illuminator so as to illuminate the microalgae biomass. In some cases, a light concentrator may include an aperture, and the light concentration surface may have a parabolic shape. In some cases, a photobioreactor may include one or more cleaning elements that runs along the first surface or the second surface of the illuminator. Optionally, a cleaning element may include a brushing apparatus or a scraping apparatus. In some cases, a light concentrator may include a compound parabolic concentrator. According to some embodiments, a photobioreactor may include a collection zone having a rectangular configuration with a first and second pair of opposite sidewalls. A collection zone may have a total volume sufficient to harvest at least half of the volume of the cultivation zone at periodic intervals. Optionally, a photobioreactor may include a zone for recovering heat from the cultivation zone, and cooling the cultivation zone.

In another aspect, embodiments of the present invention include a culture unit for cultivating microalgae. An exemplary culture unit may include a cultivation zone configured to contain a liquid culture medium and facilitate growth of the microalgae, and a light concentrator mounted above the cultivation zone, where the light concentrator has a light concentration surface that concentrates a stream of light and directs the stream of light toward an illuminator. A culture unit may also include a collection zone in fluid communication with the cultivation zone, a hydrodynamic separation zone in fluid communication with the cultivation zone, and a flocculation tank in fluid communication with the hydrodynamic separation zone. The hydrodynamic separation zone may include a cavitation mixer having a rotor and a housing, where the rotor is disposed at least partially within the housing in a concentric arrangement. Optionally, a cavitation mixer can be configured to separate at least a portion of the microalgae and liquid culture medium into a solid phase containing a solid component of the microalgae and at least one liquid phase. In some cases, a culture unit may include a standing sonic wave generator configured to create a standing sonic wave within the flocculation tank. According to some embodiments, an illuminator may include a first surface and a second surface opposite the first surface. The illuminator may also include a reflector disposed between the first surface and the second surface that reflects the stream of light through the first surface or the second surface of the illuminator so as to illuminate the microalgae. A culture unit may also include an oxygen container in fluid communication with a cultivation zone. For example, a cultivation zone may be coupled with an oxygen container via a port or conduit. Oxygen produced by algae contained in the cultivation zone can be transferred from the cultivation zone, optionally via the port or conduit, to the oxygen container.

For a fuller understanding of the nature and advantages of the present invention, reference should be had to the ensuing detailed description taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

- Top of Page


FIG. 1 shows a culture system according to embodiments of the present invention.

FIGS. 1A to 1C illustrate a cleaning mechanisms according to embodiments of the present invention.

FIG. 1D depicts a culture system according to embodiments of the present invention.

FIG. 1E illustrates aspects of an algae processing method according to embodiments of the present invention.

FIG. 1F illustrates aspects of an algae processing method according to embodiments of the present invention.

FIG. 2 shows a photobioreactor according to embodiments of the present invention.

FIG. 2A shows a culture system according to embodiments of the present invention.

FIG. 2B shows a culture system according to embodiments of the present invention.

FIG. 3 shows a light transmission assembly according to embodiments of the present invention.

FIG. 3A depicts a light transmission assembly according to embodiments of the present invention.

FIG. 3B illustrates a compound parabolic concentrator according to embodiments of the present invention.

FIG. 4 shows an agitator according to embodiments of the present invention.

FIGS. 5 and 5A-5D show an aggregator according to embodiments of the present invention.




← Previous       Next → Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Apparatus and methods for production of biodiesel patent application.
###
monitor keywords

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Apparatus and methods for production of biodiesel or other areas of interest.
###


Previous Patent Application:
Recombinant vaccinia virus having hepatitis c virus gene
Next Patent Application:
Anaerboic digester and a method for treating sludge in the digestor
Industry Class:
Chemistry: molecular biology and microbiology
Thank you for viewing the Apparatus and methods for production of biodiesel patent info.
- - -

Results in 0.12512 seconds


Other interesting Freshpatents.com categories:
Tyco , Unilever , 3m

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.3677

66.232.115.224
Next →
← Previous

stats Patent Info
Application #
US 20110275140 A1
Publish Date
11/10/2011
Document #
File Date
12/31/1969
USPTO Class
Other USPTO Classes
International Class
/
Drawings
0


Your Message Here(14K)


Algae
Biodiesel
Light
Parallel
Photobioreactor
Production
Relation


Follow us on Twitter
twitter icon@FreshPatents



Chemistry: Molecular Biology And Microbiology   Micro-organism, Per Se (e.g., Protozoa, Etc.); Compositions Thereof; Proces Of Propagating, Maintaining Or Preserving Micro-organisms Or Compositions Thereof; Process Of Preparing Or Isolating A Composition Containing A Micro-organism; Culture Media Therefor   Algae, Media Therefor  

Browse patents:
Next →
← Previous
20111110|20110275140|production of biodiesel|A photobioreactor includes a cultivation zone configured to contain a liquid culture medium and facilitate growth of a microalgae biomass, a plurality of parallel edge-lit light transmitting devices mounted within the cultivation zone, and a collection zone oriented in relation to the cultivation zone such that at least a portion |