FreshPatents.com Logo
stats FreshPatents Stats
2 views for this patent on FreshPatents.com
2011: 2 views
Updated: October 13 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Biocompatible and biostable implantable medical device

last patentdownload pdfimage previewnext patent


Title: Biocompatible and biostable implantable medical device.
Abstract: The present invention is related to a biocompatible and biostable implantable medical device. The present invention can include an implantable medical device including an electro-mechanical component. The electro-mechanical component can be coated with various novel and nonobvious coating combinations designed to promote biocompatibility and biostability. One layer of the coating combinations can be a tie layer. Another layer of the coating combinations can be a layer formed on top of the tie layer, and having biocompatible and biostable properties. ...


Browse recent Allergan, Inc. patents - Irvine, CA, US
USPTO Applicaton #: #20110270022 - Class: 600 37 (USPTO) - 11/03/11 - Class 600 
Surgery > Internal Organ Support Or Sling

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20110270022, Biocompatible and biostable implantable medical device.

last patentpdficondownload pdfimage previewnext patent

RELATED APPLICATIONS

This application claims priority to and the benefit of U.S. Provisional Patent Application No. 61/330,266, entitled “BIOCOMPATIBLE AND BIODURABLE, ELECTRONICALLY ENHANCED ACCESS PORT FOR A FLUID FILLED IMPLANT” filed on Apr. 30, 2010, the entire disclosure of which is incorporated herein by reference.

FIELD

The present invention broadly relates to medical devices and more specifically, to a biocompatible and biostable implantable medical device.

BACKGROUND

There are numerous varieties of implantable medical devices, such as fluid filled surgical implants presently comprising, or which may in the future comprise, access ports, for hydraulically adjustable gastric bands.

An exemplary hydraulic adjustable gastric band comprises a saline solution inside of one or more inflatable portions (e.g., silicone shells) positioned on the stomach surface of the ring of the gastric band to adjust the gastric band through a variety of diameters. As the inflatable portion is inflated it reduces the stoma of the gastric band and when the inflatable portion is deflated it increases the stoma of the gastric band. The saline solution is added to or removed from the inflatable portion via an access port fixed beneath the skin of the patient in the abdomen on the rectus muscle sheath using a fine needle to find the right level of restriction.

An exemplary gastric band (hydraulic, hydraulic-mechanical hybrid, or otherwise) may additionally, or alternatively, comprise an access port coupled with an override mechanism to rapidly remove fluid or gel from the implant in the event of an emergency.

Each of the foregoing implants, as well as others, comprise access ports that may be candidates for various electronics based enhancements, e.g., an access port fitted with a pressure sensor and/or an access port that transmits a signal for easier detection of its location within the body of the patient.

Furthermore, incorporation of electronic components into such access ports has not been workable at least in part because of bioincompatibility. More specifically, these enhancements and the associated electronics have heretofore caused cytotoxicity and/or been compromised by the body\'s interstitial fluids over time.

Spehr (U.S. Pat. No. 6,240,320) discloses that biocompatible material such as diamond-like carbon, sapphire, parylene compounds, diamond, or like materials may be used to coat an exterior of the electrode member. However, Spehr suffers from the drawback that it does not use, for example, a tie layer to enhance adhesion of the biocompatible material. Furthermore, Spehr does not disclose that several types of coatings can be used in conjunction with each other to address all of the essential requirements for a successful long-term function. Such requirements can include, for example, long-term biocompatibility (10+ years), ability to coat relatively uniformly and thoroughly over an abrupt topology in a conformal manner, provide a significant barrier against water molecule penetration or transmission, utilize a deposition temperature and other processing parameters which are not too harsh for the substrate material and the electromechanical device being coated, non-conductivity of the portion of the coating that directly contacts an electrical equipment, and ability to stay attached to the substrate materials and retain its moisture barrier properties despite (i) abrasion caused by handling during assembly; (ii) thermal expansion and contraction during shipping and handling and then due to operation of the device after implantation; (iii) material aging; (iv) chemical interaction between adjacent materials; and (v) exposure to sterilization, such as heat, chemicals or radiation.

Adamis (U.S. Pat. No. 7,563,255) discloses coating devices contacting tissue or bio fluid with biocompatible material, such as, polyethyleneglycol, polyvinylchloride, polycarbonate, polysulfone, polytetrafluoroethylene, parylene, titanium or the like, prior to implantation. However, Adamis suffers from the drawback that it does not use, for example, a tie layer to enhance adhesion of the biocompatible material. Furthermore, Adamis does not disclose that several types of coatings can be used as a multilayered combination to address all of the requirements listed above.

SUMMARY

In accordance with exemplary embodiments, the present invention provides for a biocompatible and biostable medical device that addresses the needs in the prior art.

In accordance with exemplary embodiments, the present invention provides for a medical device, such as an access port configured to detect the pressure of a fluid within the implant. In accordance with other exemplary embodiments, the present invention provides for various novel and nonobvious coating combinations designed to promote biostability and biocompatibility of electro-mechanical components in the medical devices, including, but not limited to, those disclosed herein.

In one embodiment, the present invention is an access port for a gastric band including a housing, and an electro-mechanical component located within the housing, wherein the electro-mechanical component is coated with a coating combination.

In another embodiment, the present invention is an access port for a gastric band including a penetrable septum defining an outer wall of a housing, a conduit configured to provide fluid communication between the penetrable septum and the gastric band, a pressure sensor in fluid communication with a fluid within the gastric band, and a printed circuit board assembly connected to the pressure sensor, wherein the printed circuit board assembly is coated with a coating combination.

In yet another embodiment, the present invention is an access port for a gastric band including a penetrable septum defining an outer wall of a housing, a conduit configured to provide fluid communication between the penetrable septum and the gastric band, and a pressure sensor in fluid communication with a fluid within the gastric band, wherein the pressure sensor is coated with a coating combination.

In still another embodiment, the present invention is a method for protectively coating a long term medical device including coating the long term medical device with a tie layer, and coating the long term medical device with a biostable and biocompatible material.

In one embodiment, the present invention is an implantable medical device including an electro-mechanical component coated with a coating combination including a tie layer.

BRIEF DESCRIPTION OF THE DRAWINGS

The exemplary embodiments of the present invention will be described in conjunction with the accompanying drawing FIGS. in which like numerals denote like elements and:

FIG. 1A illustrates an access port comprising a pressure sensor according to an embodiment of the present invention;

FIG. 1B illustrates a cross sectional view of an access port comprising a pressure sensor according to an embodiment of the present invention;

FIG. 2 illustrates a printed circuit board assembly coated with various layers according to an embodiment of the present invention;

FIG. 3 illustrates a printed circuit board assembly coated with various layers according to an embodiment of the present invention;

FIG. 4 illustrates a printed circuit board assembly coated with various layers according to an embodiment of the present invention;

FIG. 5 illustrates an electro-mechanical component for a medical device coated with various layers according to an embodiment of the present invention; and

FIG. 6 depicts a process according to an embodiment of the present invention.

DETAILED DESCRIPTION

In accordance with exemplary embodiments, the present invention comprises a biocompatible and biostable medical device, such as an access port for a gastric band. Persons skilled in the art will readily appreciate that various aspects of the invention may be realized by any number of methods and devices configured to perform the intended functions. Stated differently, other methods and devices may be incorporated herein to perform the intended functions. It should also be noted that the drawing FIGS. referred to herein are not all drawn to scale, but may be exaggerated to illustrate various aspects of the invention, and in that regard, the drawing FIGS. should not be construed as limiting. Finally, although the present invention may be described in connection with various medical principles and beliefs, the present invention should not be bound by theory.

By way of example, the present invention will be described primarily with reference to hydraulically adjustable gastric bands. Nevertheless, persons skilled in the art will readily appreciate that the present invention advantageously may be applied to and one of the numerous varieties of fluid filled surgical implants presently comprising, or which may in the future comprise, access ports. Similarly, while the present invention will be described primarily with reference to fluid filled surgical implants, persons skilled in the art will readily appreciate that the present invention advantageously may be applied to other medical devices, whether fluid or gel filled.

In accordance with exemplary embodiments, the present invention provides for an access port configured to detect the pressure of a fluid within the implant.

At the outset, it should be noted that while the present invention will be described primarily with reference to an access port, persons skilled in the art will readily appreciate that an access port is not necessary for detection of the pressure of a fluid within an implant. Stated differently, the diagnostic and therapeutic advantages associated with knowing the pressure of a fluid within an implant, as provided for by the present invention, may be realized without fluid access to the implant via an access port.

As seen in FIGS. 1A and 1B, a medical device, such as an access port 10 including a pressure sensor 20, and a penetrable septum 30 is depicted. The penetrable septum 30 can be penetrated by a needle to allow fluid or gel to be added or removed from the access port 10. A conduit 40 provides access to a fluid filled implant such that the addition or removal of fluid to the access port 10 thereby adds or removes fluid from the fluid filled implant. The needle can be, for example, a fine needle, a hypodermic needle, a Huber needle, or any other type of needle which can supply fluid or gel to the access port 10. In addition, a tube, instead of a needle can be used. The access port 10 can be connected, for example, to the fluid filled implant(not shown) and can be used to supply or remove fluid or gel from the fluid filled implant. The fluid filled implant can be, for example, a gastric band, and/or a breast implant (not shown).

The access port can also optionally include a plate element 50 which is positioned between the penetrable septum 30 and the pressure sensor 20. The positioning of the plate element 50 serves to prevent the needle from damaging the pressure sensor 20. The plate element 50 can be formed, for example, from titanium, stainless steel, or any other type of material that can protect the pressure sensor 20 from damage.

A printed circuit board assembly (PCBA) 60 can be connected, for example, to the pressure sensor 20. The PCBA 60 is configured to telemetrically relay a pressure value obtained from the pressure sensor 20 to an external control unit. The pressure value can indicate, for example, a pressure of the access port 10 and/or the fluid filled implant. The pressure sensor 20 can also detect, for example, a fill volume, a strain, and/or a linear measurement of the access port 10. The access port 10 can also include, for example, a housing 70 which can, for example, define a cavity containing the pressure sensor 20, a portion of the conduit 40, the plate element 50, and/or the PCBA 60. The penetrable septum 30 can define, for example, an outer wall of the housing 70.

The present invention provides for various novel and nonobvious coating combinations designed to promote biostability and/or biocompatibility of electro-mechanical components of the access port or other medical devices, including, but not limited to, those disclosed herein.

The term biostable or biostability can mean, for example, that an implantable device or object is capable of being in contact with living tissues or organisms and still function within the expected performance parameters. In one embodiment, a biostable object or implanted device can still function within the expected performance parameters, for example, for 10 years or more while being in contact with the living tissues or organisms.

The term biocompatible or biocompantibility can mean, for example, that the implantable device or object is capable of being in contact with living tissues or organisms without causing harm to the living tissue or the organism. In one embodiment, a biocompatible object can be, for example, an object which meets the U.S. Pharmacopoeia (“USP”) Class VI requirements. For example, the coating combination may be biocompatible over an extended period of time, such as for 1, 2, 5, 10, 15, 20, or more years.

In accordance with exemplary embodiments, the present invention provides for coating combinations that isolate electro-mechanical components, including, but not limited to, printed circuit board assemblies, sensors, motors and other components typical to implantable medical devices, and/or components forming those objects listed above. The electro-mechanical components can be purely electrical components, purely mechanical components, or a hybrid of electrical and mechanical components.

In one embodiment, the coating combinations can be, for example, a multilayer coating.

Another exemplary coating combination may be able to coat relatively uniformly and/or thoroughly, over electro-mechanical components with an abrupt topology. Such electro-mechanical components can be objects with various abrupt geometries and/or various surface chemistries and thermal expansion properties such as a PCBA. Stated differently, an exemplary coating combination is capable of conformal coating.

Yet another exemplary coating combination may be a barrier against water molecule and other moisture penetration and/or transmission. Qualitatively, an exemplary coating combination may have a moisture vapor transmission rate (MVTR) roughly equivalent to that of titanium at approximately 25 μm (0.001 inches) thickness. Or, stated in terms of water vapor transmission rate (WVTR), an exemplary coating combination may allow less than 0.001 g/m2/day. MVTR and WVTR are measures of the passage of water vapor through a substance.

Exemplary coating combinations may remain attached to the substrate material and/or the electro-mechanical component being coated and retain its moisture barrier properties despite: (i) abrasion caused by handling during assembly; (ii) thermal expansion and contraction during shipping, handling, and operation of the electro-mechanical component after implantation; (iii) material aging; (iv) chemical interaction between adjacent materials; and (v) exposure to sterilization such as heat, chemicals or radiation.

The deposition temperature and other processing parameters of other exemplary coating combinations should not be too harsh for the substrate material and the electro-mechanical component being coated.

Depending on the electro-mechanical component being coated, yet other exemplary coating combinations may be non-conductive or conductive. For example, where the electro-mechanical components transmit or receive RF signals, the coating combinations should not be an RF shield. However, the coating combinations may provide RF interference protection where appropriate.

In one embodiment, the coating combination, along with its coating process, may be reasonable in terms of cost, e.g., no more than the cost of the underlying electro-mechanical component being coated.

In accordance with exemplary embodiments of the present invention, an exemplary coating combination may comprise one or more of the following layers depending on the desired coating combination characteristics: (i) parylene (e.g., Parylene P, or Parylene M); (ii) diamond like carbon (DLC); (iii) titanium nitride (TiN); (iv) titanium carbide or silicon nitride; (v) cyclo olefin copolymer (COC) or cyclo olefin polymer (COP); (vi) epoxy; (vii) silicone polymer (e.g., primarily resin based (Q or T functional), linear polymer based, or a hybrid of both); (viii) glass; (ix) chloro-tri-fluoro-ethylene (CTFE) or poly-chloro-tri-fluoro-ethylene (PCTFE); (x) poly-ether-ether-ketone or polysulfone; (xi) acetal or polyoxymethylene (POM); (xii) polypropylene; (xiii) liquid crystal polymer (LCP); (xiv) ultra high molecular weight polyethylene (UHMWPE); and (xv) fluoropolymer acrylate; and (xvi) synthetic diamond.

Exemplary methods of applying an exemplary coating combination comprises one or more of the following steps: (i) testing the electro-mechanical component for functionality; (ii) plasma treating the external surfaces of the electro-mechanical component, e.g., to remove small contaminants and/or enhance surface adhesion; (iii) packaging the electro-mechanical component in a particle free environment and package meeting the ISO class 6, or better, ISO 14644-1 clean room standard (class 1000 under the FED-STD-209E clean room standard); (iv) opening and handling the package under clean room conditions; (v) placing the electro-mechanical component in a coating chamber; and (vi) applying the coating(s).



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Biocompatible and biostable implantable medical device patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Biocompatible and biostable implantable medical device or other areas of interest.
###


Previous Patent Application:
Biocompatible and biostable implantable medical device
Next Patent Application:
Delivering pelvic floor repair implants
Industry Class:
Surgery
Thank you for viewing the Biocompatible and biostable implantable medical device patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.55446 seconds


Other interesting Freshpatents.com categories:
Amazon , Microsoft , IBM , Boeing Facebook

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2014
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20110270022 A1
Publish Date
11/03/2011
Document #
12887730
File Date
09/22/2010
USPTO Class
600 37
Other USPTO Classes
427/21
International Class
/
Drawings
5


Implantable Medical Device
Layer
Medical Device


Follow us on Twitter
twitter icon@FreshPatents