Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next
Prev

Optical reader system and method for monitoring and correcting lateral and angular misalignments of label independent biosensors




Title: Optical reader system and method for monitoring and correcting lateral and angular misalignments of label independent biosensors.
Abstract: An optical reader system and method are described herein that can detect a lateral and/or angular misalignment of one or more biosensors so that the biosensors can be properly re-located after being removed from and then reinserted into the optical reader system. In one embodiment, the biosensors are incorporated within the wells of a microplate. ...


USPTO Applicaton #: #20110043828
Inventors: Anthony G. Frutos, Jacques Gollier, Jinlin Peng, Garrett A. Piech, Michael B. Webb


The Patent Description & Claims data below is from USPTO Patent Application 20110043828, Optical reader system and method for monitoring and correcting lateral and angular misalignments of label independent biosensors.

CLAIMING BENEFIT OF CO-PENDING APPLICATIONS

This application is a divisional application of U.S. patent application Ser. No. 11/789,900, filed Apr. 26, 2007, now pending, which is a divisional application of U.S. patent application Ser. No. 11/210,920, filed Aug. 23, 2005, now U.S. Pat. No. 7,629,173, which is a continuation-in-part application of U.S. patent application Ser. No. 11/027,547 filed Dec. 29, 2004, now U.S. Pat. No. 7,604,984. The contents of these documents are hereby incorporated by reference herein.

BACKGROUND

- Top of Page


OF THE INVENTION

1. Field of the Invention

The present invention relates to an optical reader system and method for detecting a lateral and/or angular misalignment of one or more biosensors so that the biosensors can be properly re-located after being removed from and then reinserted into the optical reader system. In one embodiment, the biosensors are incorporated within the wells of a microplate.

2. Description of Related Art

A major challenge today is to design an optical reader system that can properly re-locate a label independent detection (LID) microplate after it is removed and then reinserted back into the optical reader system. In particular, what is needed is an optical reader system that can detect and correct a lateral and/or angular misalignment of a re-positioned LID microplate. This need and other needs are addressed by the optical reader system and method of the present invention.

BRIEF DESCRIPTION OF THE INVENTION

The present invention includes an optical reader system and method that uses one or more fiducial markings (e.g., position sensors) on a LID microplate to monitor and correct if needed any lateral and/or angular misalignment of the microplate. In one embodiment, the method includes the steps of: (a) placing the microplate onto a translation stage; (b) using one or more fiducial marking(s) on the microplate to determine a first position of the microplate; (c) removing the microplate from the translation stage; (d) re-inserting the microplate back onto the translation stage; (e) using the fiducial marking(s) on the microplate to determine a second position of the microplate; (f) comparing the first position and the second position of the microplate; and (g) if there is a difference between the two positions, then addressing the lateral and/or angular misalignment of the microplate by: (1) moving the translation stage so that the microplate is located at or substantially near to the first position; or (2) not moving the microplate but instead adjusting via software a measured reading (e.g., resonance wavelength) based upon the known position error and a known translation sensitivity. Likewise, steps (a)-(g) could be accomplished by using a stationary holder for the microplate and instead the optical beams can be moved that interrogate the stationary microplate. In another embodiment, the optical reader system can be used to monitor and correct a lateral and/or angular misalignment of a biosensor (which has a fiducial marking) that is not incorporated within a microplate.

BRIEF DESCRIPTION OF THE DRAWINGS

- Top of Page


A more complete understanding of the present invention may be had by reference to the following detailed description when taken in conjunction with the accompanying drawings wherein:

FIG. 1 is a block diagram of an optical reader system that is used to monitor and correct a lateral and/or angular misalignment of a microplate (or biosensor) in accordance with the present invention;

FIG. 2 is a graph that is used to help describe why the optical reader system should monitor and correct the lateral and/or angular misalignment of the microplate (or biosensor) in accordance with the present invention;

FIGS. 3-5, 6A and 6B are several graphs and diagrams used to help describe one type of fiducial marking that can be formed on the biosensor which enables the optical reader system to monitor and correct the lateral and/or angular misalignment of the microplate (or biosensor) in accordance with the present invention;

FIGS. 6C and 6D are two diagrams used to help describe a second type of fiducial marking that can be formed on the biosensor which enables the optical reader system to monitor and correct the lateral and/or angular misalignment of the microplate (or biosensor) in accordance with the present invention;

FIGS. 7A and 7B are two diagrams used to help describe a third type of fiducial marking that can be formed on the microplate (or biosensor) which enables the optical reader system to monitor and correct the lateral and/or angular misalignment of the microplate (or biosensor) in accordance with the present invention;

FIGS. 8-10 are three graphs which are used to help explain other uses for the third type of fiducial marking in addition to enabling the optical reader system to monitor and correct the lateral and/or angular misalignment of the microplate (biosensor) in accordance with the present invention; and

FIG. 11 is a flowchart illustrating the steps of a method for monitoring and correcting a lateral and/or angular misalignment of a microplate (or biosensor) in accordance with the present invention.

DETAILED DESCRIPTION

- Top of Page


OF THE DRAWINGS

Referring to FIGS. 1-11, there are disclosed several diagrams and graphs which are used to help describe the optical reader system 100 and method 1100 of the present invention. As discussed below, the optical reader system 100 is capable of performing two functions: (1) detecting a biological substance 124 (or a biomolecular binding event) on a biosensor 102; and (2) detecting and correcting any lateral and/or angular misalignment of the biosensor 102 which is caused by the removal and subsequent reinsertion of the biosensor 102 into the optical reader system 100. Prior to discussing the second function, a brief description is provided about how the optical reader system 100 can detect a biological substance 124 on the biosensor 102.

As shown in FIG. 1, the optical reader system 100 is used to interrogate a biosensor 102 (e.g., resonant waveguide grating (RWG) biosensor 102, a surface plasmon resonance (SPR) biosensor 102) to determine if a biological substance 124 is present on the biosensor 102. The optical reader system 100 includes a light source 106 (e.g., lamp, laser, diode) that outputs an optical beam 104 which is scanned across the biosensor 102. Typically, the biosensor 102 is moved so the optical beam 104 can be scanned across the biosensor 102. Alternatively, the optical beam 104 itself may be scanned with a mirror, galvanometer, electro-optic or acousto-optic scanner or other suitable adjustable optical element, across a stationary biosensor 102. While the optical beam 104 is scanned across the biosensor 102, a detector 108 (e.g., spectrometer, CCD camera or other optical detector) collects an optical beam 112 which is reflected from the biosensor 102. A processor 110 (e.g., DSP 110, computer 110) then processes the collected optical beam 112 to obtain and record raw spectral data 114 which is a function of a position (and possibly time) on the biosensor 102. Thereafter, the processor 110 analyzes the raw spectral data 114 to create a spatial map of resonant wavelength (peak position) data which indicates if a biological substance 124 is present on the biosensor 102.

In particular, the biosensor 102 makes use of changes in the refractive index at the sensor surface 126 that affect the waveguide coupling properties of the emitted optical beam 104 and the detected optical beam 112 to enable label-free detection of the biological substance 124 (e.g., cell, molecule, protein, drug, chemical compound, nucleic acid, peptide, carbohydrate) on the superstrate 103 (sensing region) of the biosensor 102. The biological substance 124 may be located within a bulk fluid that is deposited on the superstrate 103 (sensing region) of the biosensor 102 and it is the presence of this biological substance 124 that alters the index of refraction at the surface 126 of the biosensor 102. Thus, to detect the biological substance 124, the biosensor 102 needs to be at least probed with an optical beam 104 and then a reflected optical beam 112 received at the detector 108 is analyzed to determine if there are any changes (˜1 part per million) in the refractive index caused by the presence of the biological substance 124. In one embodiment, the top surface 126 may be coated with biochemical compounds (not shown) that only allow surface attachment of specific complementary biological substances 124 which enables a biosensor 102 to be created that is both highly sensitive and highly specific. In this way, the optical reader system 100 and biosensor 102 may be used to detect a wide variety of biological substances 124. And, if multiple biosensors 102 are arranged in array like in a microplate 126 then they may be used to enable high throughput drug or chemical screening studies. For a more detailed discussion about the detection of a biological substance 124 (or a biomolecular binding event) using the scanning optical reader system 100, reference is made to the aforementioned U.S. patent application Ser. No. 11/027,547.

It is well known that when an optical beam 104 is used to interrogate a biosensor 102, then the resonance wavelength often has an undesirable dependence upon the exact spatial location at which the optical beam 104 strikes the biosensor 102. The undesirable variation of the resonance wavelength is often caused by the non-homogeneity of the biosensor 102 which can be attributable to variations in the thickness of the waveguide and/or to variations in the grating period (for example). In fact, a typical variation in the resonance wavelength can be as high as 3 pm per micron. Thus, if one desires to remove and replace the biosensor 102 from the optical reader 100 during the course of an experiment, the biosensor 102 needs to be repositioned to a high accuracy to prevent wavelength shifts induced by translation from overwhelming those wavelength shifts from biochemical binding. The impact, in terms of wavelength shift Δλ of such a translation sensitivity upon the measurement is thus

Δλ =




← Previous       Next →
Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Optical reader system and method for monitoring and correcting lateral and angular misalignments of label independent biosensors patent application.

###

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Optical reader system and method for monitoring and correcting lateral and angular misalignments of label independent biosensors or other areas of interest.
###


Previous Patent Application:
Optical information input device, electronic device with optical input function, and optical information input method
Next Patent Application:
Surface sensing device with optical sensor
Industry Class:
Optics: measuring and testing
Thank you for viewing the Optical reader system and method for monitoring and correcting lateral and angular misalignments of label independent biosensors patent info.
- - -

Results in 0.05727 seconds


Other interesting Freshpatents.com categories:
Novartis , Apple , Philips , Toyota ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.147

66.232.115.224
Browse patents:
Next
Prev

stats Patent Info
Application #
US 20110043828 A1
Publish Date
02/24/2011
Document #
File Date
12/31/1969
USPTO Class
Other USPTO Classes
International Class
/
Drawings
0




Follow us on Twitter
twitter icon@FreshPatents





Browse patents:
Next
Prev
20110224|20110043828|optical reader monitoring and correcting lateral and angular misalignments of label independent biosensors|An optical reader system and method are described herein that can detect a lateral and/or angular misalignment of one or more biosensors so that the biosensors can be properly re-located after being removed from and then reinserted into the optical reader system. In one embodiment, the biosensors are incorporated within |
';