stats FreshPatents Stats
13 views for this patent on
2013: 1 views
2012: 5 views
2011: 7 views
Updated: April 14 2014
newTOP 200 Companies filing patents this week

    Free Services  

  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • View the last few months of your Keyword emails.

  • Patents sorted by company.


Follow us on Twitter
twitter icon@FreshPatents

Selective targeting agents for mitochondria

last patentdownload pdfimage previewnext patent

Title: Selective targeting agents for mitochondria.
Abstract: The present invention provides a composition and related methods for delivering cargo to a mitochondria which includes (a) a membrane active peptidyl fragment having a high affinity with the mitochondria and (b) cargo. The cargo may be selected from a wide variety of desired cargos which are to be delivered to the mitochondria for a specific purpose. Compositions and methods are disclosed for treating an illness that is caused or associated with cellular damage or dysfunction which is caused by excessive mitochondrial production of reaction oxygen species (ROS). Compositions which act as mitochondria-selective targeting agents using the structural signaling of the β-turn recognizable by cells as mitochondria) targeting sequences are discussed. Mitochondria and cell death by way of apoptosis is inhibited as a result of the ROS-scavenging activity, thereby increasing the survival rate of the patient. In a preferred embodiment, the compositions and methods may be administered therapeutically in the field to patients with profound hemorrhagic shock so that survival could be prolonged until it is feasible to obtain surgical control of the bleeding vessels. In further preferred embodiments, the composition for scavenging radicals in a mitochondria membrane includes a radical scavenging agent and a membrane active compound having a high affinity with said mitochondrial membrane and associated methods. In another embodiment, the cargo transported by mitochondrial-selective targeting agents may include an inhibitor of nitric oxide synthase (NOS) enzyme activity. ...

Browse recent Hirshman Law, LLC patents - Pittsburgh, PA, US
Inventors: Peter Wipf, Jingbo Xiao, Michell P. Fink, Valerian E. Kagan, Yulia Y. Tyurina, Anthony J. Kanai
USPTO Applicaton #: #20110039792 - Class: 514 218 (USPTO) - 02/17/11 - Class 514 

view organizer monitor keywords

The Patent Description & Claims data below is from USPTO Patent Application 20110039792, Selective targeting agents for mitochondria.

last patentpdficondownload pdfimage previewnext patent


This application is a continuation of U.S. patent application Ser. No. 11/565,779, filed Dec. 1, 2006, now U.S. Pat. No. 7,718,603, issued May 18, 2010, which is a continuation-in-part of U.S. Ser. No. 11/465,524 filed Aug. 18, 2006, which was a continuation-in-part of U.S. Traditional application Ser. No. 11/465,162, filed Aug. 17, 2006 which in turn claimed the benefit of U.S. Provisional Application No. 60/757,054 entitled “Selective Targeting Agents for Mitochondria” filed on Jan. 6, 2006, each of which is incorporated herein by reference in its entirety.


This invention was made with Government support under Grant No. W81XWH-05-2-0026, awarded by DARPA, and Grant No. GM067082, awarded by the National Institutes of Health. The government has certain rights in the invention.


1. Field of the Invention

The present invention relates to compositions and methods for providing mitochondria-selective targeting agents bonded or linked to desired cargo, such as radical scavenging agents. In another embodiment, the cargo transported by mitochondrial-selective targeting agents may include an inhibitor of nitric oxide synthase (“NOS”) enzyme activity. Some embodiments employ membrane active peptidyl fragments having a high affinity with the mitochondria and the cargo. Some embodiments focus on compositions and methods of TEMPO conjugates, particularly synthetic Gramicidin S-peptidyl TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl) conjugates.

2. Description of the Prior Art

Cells typically undergo some degree of oxidative stress by way of generating reactive oxygen species (“ROS”) and reactive nitrogen species (“RNS”). Specifically, the cellular respiration pathway generates ROS and RNS within the mitochondrial membrane of the cell, see Kelso et al., Selective Targeting of a Redox-active Ubiquinone to Mitochondria within Cells: Antioxidant and Antiapoptotic Properties, J. BIOL. CHEM. 276:4588 (2001). Reactive oxygen species include free radicals, reactive anions containing oxygen atoms, and molecules containing oxygen atoms that can either produce free radicals or are chemically activated by them. Specific examples include superoxide anion, hydroxyl radical, and hydroperoxides.

Naturally occurring enzymes, such as superoxide dismutase (“SOD”) and catalase salvage ROS and RNS radicals to allow normal metabolic activity to occur.

Significant deviations from cell homeostasis, such as hemorrhagic shock, lead to an oxidative stress state, thereby causing “electron leakage” from the mitochondrial membrane. Said “electron leakage” produces an excess amount of ROS for which the cell\'s natural antioxidants cannot compensate. Specifically, SOD cannot accommodate the excess production of ROS associated with hemorrhagic shock which ultimately leads to premature mitochondria dysfunction and cell death via apoptosis, see Kentner et al., Early Antioxidant Therapy with TEMPOL during Hemorrhagic Shock Increases Survival in Rats, J. OF TRAUMA® INJURY, INFECTION, AND CRITICAL CARE, 968 (2002).

Cardiolipin (“CL”) is an anionic phospholipid exclusively found in the inner mitochondrial membrane of eukaryotic cells, see Iverson, S. L. and S. Orrenius, The cardiolipincytochrome c interaction and the mitochondria) regulation of apoptosis, ARCH. BIOCHEM. 423:37-46 (2003).

Under normal conditions, the pro-apoptotic protein cytochrome c is anchored to the mitochondrial inner membrane by binding with CL, see Tuominen, E. K. J., et al. Phospholipid cytochrome c interaction: evidence for the extended lipid anchorage, J. BIOL. CHEM., 277:8822-8826 (2002). The acyl moieties of CL are susceptible to peroxidation by reactive oxygen species. When ROS are generated within mitochondria in excess quantities, cytochrome C bound to CL can function as an oxidase and induces extensive peroxidation of CL in the mitochondrial membrane, see Kagan, V. E. et al., Cytochrome c acts as a cardiolipin oxygenase required, for release of proapoptotic, factors, NATURE CHEM. BIOL. 1:223-232 (2005); also Kagan, V. E. et al., Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine, FREE RAH. BIOL. MED. 37:1963-1985 (2005).

The peroxidation of the CL weakens the binding between the CL and cytochrome C, see Shidoji, Y. et al., Loss of molecular interaction between cytochrome C and cardiolipin due to lipid peroxidation, BIOCHEM. BIOPHYS. RES. COMM. 264:343-347 (1999). This leads to the release of the cytochrome Cinto the mitochondrial intermembrane space, inducing apoptotic cell death.

Further, the peroxidation of CL has the effect of opening the mitochondrial permeability transition pore (“MPTP”), see Dolder, M. et al., Mitochondria creatine kinase in contact sites: Interaction with porin and adenine nucleotide translocase, role in permeability transition and sensitivity to oxidative damage, BIOL. SIGNALS RECEPT., 10:93-111 (2001); also Imai, H. et al., Protection from inactivation of the adenine nucleotide translocator during hypoglycaemia-induced apoptosis by mitochondria/phospholipid hydroperoxide glutathione peroxidase, BIOCHEM. J., 371:799-809 (2003). Accordingly, the mitochondrial membrane swells and releases the cytochrome C into the cytosol. Excess cytochrome C in the cytosol leads to cellular apoptosis, see Iverson, S. L. et al. The cardiolipin-cytochrome c interaction and the mitochondria regulation of apoptosis, ARCH. BIOCHEM. BIOPHYS. 423:37-46 (2003).

Moreover, mitochondrial dysfunction and cell death may ultimately lead to multiple organ failure despite resuscitative efforts or supplemental oxygen supply, see Cairns, C., Rude Unhinging of the Machinery of Life: Metabolic approaches to hemorrhagic Shock, CURRENT CRITICAL CARE, 7:437 (2001). Accordingly, there is a need in the art for an antioxidant mimic similar to SOD which scavenges the ROS, thereby reducing oxidative stress. Reduction of oxidative stress delays, even inhibits, physiological conditions that otherwise might occur, such as hypoxia.

Also, there is also a need to improve the permeability of antioxidants\' penetration of the cellular membrane. One of the limitations of SOD is that it cannot easily penetrate the cell membrane. However, nitroxide radicals, such as TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl) and its derivatives, have been shown to penetrate the cell membrane better than SOD. Further, nitroxide radicals like TEMPO prevent the formation of ROS, particularly superoxide, due to their reduction by the mitochondrial electron transport chain to hydroxylamine radical scavengers, see Wipf, P. et al., Mitochondria targeting of selective electron scavengers: synthesis and biological analysis of hemigramicidin-TEMPO conjugates, J. AM. CHEM. SOC. 127:12460-12461. Accordingly, selective delivery of TEMPO derivatives may lead to a therapeutically beneficial reduction of ROS and may delay or inhibit cell death due to the reduction of oxidative stress on the cell.

This selective delivery may be accomplished by way of a number of different pathways—i.e., a biological or chemical moiety has a specific targeting sequence for penetration of the cell membrane, ultimately being taken up by the mitochondrial membrane. Selective delivery of a nitroxide SOD mimic into the mitochondrial membrane has proven difficult. Accordingly, there is a need in the art for effective and selective delivery of TEMPO antioxidant derivatives that specifically target the mitochondrial membrane to help reduce the ROS and RNS species. Said antioxidants also help prevent cellular and mitochondria apoptotic activity which often results due to increased ROS species, see Kelso et al., Selective Targeting of a Redox-active Ubiquinone to Mitochondria within Cells: Antioxidant and Antiapoptotic Properties, J. BIOL. CHEM., 276: 4588 (2001).

U.S. Patent Application 2005/0169904 discloses a conjugate which comprises the following: (i) a mitochondrial membrane-permeant peptide; (ii) a mitochondrial-active agent or compound of interest such as a detectable group or compound, an active mitochondrial protein or peptide, nucleic acids, drug or signaling agent; and, (iii) a mitochondrial targeting sequence linking said mitochondrial membrane-permeant peptide and said active mitochondrial protein or peptide. The targeting sequence of the conjugate is cleaved within the mitochondrial matrix, not within the cellular cytoplasm of a target cell into which said mitochondrial-active agent or compound is to be delivered. Methods of use of these compounds and agents are also disclosed within the publication. A disadvantage of this metholodology is that it requires cleavage of the peptide sequence in order to release the active agent.

U.S. Pat. No. 6,331,532 and U.S. Patent Application 2005/0245487 A1 disclose mitochondrially targeted antioxidant compounds. The compound comprises a lipophilic cation covalently bonded to an antioxidant moiety. Pharmaceutical compositions containing the mitochondrially targeted antioxidant compounds, and methods of therapy or prophylaxis of patients who would benefit from reduced oxidative stress are disclosed. This methodology relies on ionic or lipophilic interactions and is less selective than the present invention.

U.S. Patent Application 2005/0107366 A1 discloses a pharmaceutical composition that is covalently bound to a non-toxic spin trapping compound. Spin trapping compositions generally have been known to be effective in treating a variety of disorders. Spin trapping compounds are molecules that have an unpaired electron (i.e., paramagnetic), form a stable compound or complex with a free radical, and lack cytotoxicity. One example of a spin trapping compound is TEMPO. These spin trapping compounds, such as TEMPO, provide a unique signal that can be measured by electron spin spectroscopy (“ESR”). Since an effective mitochondrial-targeting sequence is not used, this approach is not as efficient as the present invention.

TEMPO and its derivatives are antioxidants that have been shown to improve physiologic variables after induced hemorrhagic shock, such as heart rate, systolic blood pressure, acid-base balance, serum antioxidant status, and survival time, see Kentner et al., Early Antioxidant Therapy with TEMPOL during Hemorrhagic Shock Increases Survival in Rats, J. OF TRAUMA® INJURY, INFECTION, AND CRITICAL CARE, 968 (2002). In general, effective levels of administered TEMPO are too high to accomplish therapeutic effects.

Therefore, in spite of the foregoing prior art, there remains a very real need for a composition and associated methods for delivering cargo of various types to mitochondria. In one embodiment, a composition comprising membrane active peptidyl fragments having a high affinity with the mitochondria linked to cargo is provided. The cargo may be selected from a large group of candidates. The invention also contemplates compositions and methods for effectively treating a condition that is caused by excessive mitochondria production of ROS and RNS in the mitochondrial membrane.



Download full PDF for full patent description/claims.

Advertise on - Rates & Info

You can also Monitor Keywords and Search for tracking patents relating to this Selective targeting agents for mitochondria patent application.
monitor keywords

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Selective targeting agents for mitochondria or other areas of interest.

Previous Patent Application:
Acetylcholinesterase (ache)-derived peptide as an inducer of granulocytopoiesis, uses and methods thereof
Next Patent Application:
Application of ginsenoside rb1 in preparing medicaments for treating dilated cardiomyopathy
Industry Class:
Drug, bio-affecting and body treating compositions
Thank you for viewing the Selective targeting agents for mitochondria patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.74619 seconds

Other interesting categories:
Medical: Surgery Surgery(2) Surgery(3) Drug Drug(2) Prosthesis Dentistry   -g2-0.2407

FreshNews promo

stats Patent Info
Application #
US 20110039792 A1
Publish Date
Document #
File Date
Other USPTO Classes
International Class

Hemorrhagic Shock
Nitric Oxide

Follow us on Twitter
twitter icon@FreshPatents