FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: January 23 2015
newTOP 200 Companies
filing patents this week



Advertise Here
Promote your product, service and ideas.

    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next →
← Previous

Apparatus and method for managing an access mode of a node b in a wireless communication system


Title: Apparatus and method for managing an access mode of a node b in a wireless communication system.
Abstract: An apparatus and a method for managing an access mode of an NB in a wireless communication system. In the method for changing the access mode of a second NB at a first NB or a CN, an access mode change of the second NB is determined. An access mode change request message is transmitted to the second NB, requesting the access mode change of the second NB. An access mode change response message including an access mode control result is received from the second NB. ...



Browse recent Samsung Electronics Co., Ltd. patents
USPTO Applicaton #: #20100309782 - Class: 370229 (USPTO) - 12/09/10 - Class 370 
Inventors: Ok-seon Lee, Yung-soo Kim

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20100309782, Apparatus and method for managing an access mode of a node b in a wireless communication system.

PRIORITY

The present application claims priority under 35 U.S.C. §119(a) to a Korean patent application filed in the Korean Intellectual Property Office on Jun. 9, 2009 and assigned Serial No. 10-2009-0051131, the entire disclosure of which is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

- Top of Page


1. Field of the Invention

The present invention relates generally to an apparatus and a method for managing an access mode of a Node B (NB) in a wireless communication system. More particularly, the present invention relates to an apparatus and a method for determining and changing an access mode of an NB, depending on different factors in a wireless communication system.

2. Description of the Related Art

In a conventional cellular communication system, an NB, which is connected to a mobile communication core network, provides communication services to User Equipments (UEs) that located within a cell area of the NB.

When an amount of communication in a cell area of an NB is expected to increase temporarily, for example, during a large gathering such as a party or concert, a load of the cell is also expected to increase temporarily, which may affect the quality of the communication services provided by the NB. When this occurs, the load of the cell may be distributed by temporarily adding a mobile NB, e.g., an NB mounted on a vehicle, to the area where the amount of communication is expected to be large.

Additionally, in a conventional cellular communication system, a channel state often deteriorates due to a geographical condition inside a cell, an increased distance between a UE and an NB, or movement of a UE. For example, a shadowing area may be formed inside a building, such as an office or a house, which is located inside a coverage area of an NB. If a UE is located in the shadowing area, an NB may not be able perform sufficient communication because a channel state associated with the UE is poor.

In order to improve communication in areas with poor channel conditions, a femto-cell service may be utilized. A femto cell is a small cell area formed by a compact NB that is commonly installed inside an office or a house and that accesses a mobile communication core network via a broadband network. The compact NB is a low power NB, which is often installed by a user, not the service provider. and the compact NB may also be referred to as a micro NB, a self configurable NB, an indoor NB, a home NB, or a femto NB. In the following description, the compact NB is referred to as a femto NB.

There are three access modes of a femto NB that are currently under discussion in the current 3rd Generation Partnership Project Long Term Evolution (3GPP LTE), which are defined as follows.

1. Open Access Mode: a mode that grants access to all users that are not registered in an NB.

2. Closed Access Mode: a mode that grants access only to users that are registered in an NB.

3. Hybrid Access Mode: a mode that that grants access to a user that is registered in an NB, and also grants an access to users that are not registered in the NB.

The above-defined various access modes of the femto NB may also be applied to a mobile NB and a general macro NB.

Currently, when an NB is installed, e.g., a femto NB, a mobile NB, or a general macro NB, an NB access mode is permanently set. Accordingly, in an environment where neighbor NBs use the same frequency, when a UE that receives a service from an NB that utilizes an open access mode enters a coverage of an NB that utilizes a closed access mode, a serious interference factor is generated between the neighbor NBs that use the different access modes, which deteriorates communication quality.

SUMMARY

- Top of Page


OF THE INVENTION

The present invention is designed to address at least the above-mentioned problems and/or disadvantages occurring in the prior art and to provide at least the advantages described below. Accordingly, an aspect of the present invention is to provide an apparatus and a method for managing an access mode of an NB in a wireless communication system.

Another aspect of the present invention is to provide an apparatus and a method for solving an interference problem that occurs between neighbor NBs using different access modes, but the same frequency, and providing a load balancing effect in a specific area or when an event occurs by determining and changing an access mode of an NB depending on different factors in a wireless communication system.

In accordance with an aspect of the present invention, a method for changing an access mode of a second Node B (NB) by a first NB or a Core Network (CN) of a wireless communication system is provided. The method includes determining to change the access mode of the second NB; transmitting, to the second NB, an access mode change request message that requests an access mode change of the second NB; and receiving, from the second NB, an access mode change response message including an access mode control result.

In accordance with another aspect of the present invention, a method for changing an access mode by a Node B (NB) of a wireless communication system is provided. The method includes receiving an access mode change request message requesting change of the access mode change of the NB from another NB or a Core Network (CN); determining whether to allow the access mode to change; and transmitting an access mode change response message including an access mode control result to the another NB or the CN.

In accordance with another aspect of the present invention, a method for changing an access mode by a Node B (NB) in a wireless communication system is provided. The method includes determining to change the access mode of the NB; transmitting, to a Core Network (CN), an access mode change request message that requests an access mode change of the NB; and receiving, from the CN, an access mode change response message including an access mode control result.

In accordance with another aspect of the present invention, a first Node B (NB) of a wireless communication system that changes an access mode of a second NB is provided. The first NB includes a controller for determining to change the access mode of the second NB; a transmission modem for transmitting, to the second NB, an access mode change request message requesting an access mode change of the second NB; and a reception modem for receiving, from the second NB, an access mode change response message including an access mode control result.

In accordance with another aspect of the present invention, a Node B (NB) of a wireless communication system that changes an access mode of the NB is provided. The NB includes a reception modem for receiving, from another NB or a Core Network (CN), an access mode change request message requesting an access mode change of the second NB; a controller for controlling the access mode of the NB, when the access mode change request message is received, to determine whether to allow the access mode change of the second NB; and a transmission modem for transmitting, to the first NB or the CN, an access mode change response message including an access mode control result.

In accordance with yet another aspect of the present invention, a Node B (NB) of a wireless communication system that changes an access mode of the NB is provided. The NB includes a controller for determining to change the access mode of the NB; a transmission modem for transmitting an access mode change request message to a Core Network (CN), requesting an access mode change of the NB; and a reception modem for receiving, from the CN, an access mode change response message including an access mode control result.

BRIEF DESCRIPTION OF THE DRAWINGS

- Top of Page


The above and other aspects, features, and advantages of certain embodiments of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:

FIG. 1 illustrates an example of an interference factor of an access mode decision and change factors of an NB in a wireless communication system according to an embodiment of the present invention;

FIG. 2 is a signal flow illustrating a method for changing an NB access mode by an interference factor at an NB of a wireless communication system according to an embodiment of the present invention;

FIG. 3 is a signal flow illustrating a method for changing an NB access mode by an interference factor at an NB of a wireless communication system according to an embodiment of the present invention;

FIG. 4 is a signal flow illustrating a method for changing an NB access mode by a cell load distribution necessity factor at an NB of a wireless communication system according to an embodiment of the present invention;

FIG. 5 is a signal flow illustrating a method for changing an NB access mode by a cell load distribution necessity factor at an NB of a wireless communication system according to an embodiment of the present invention;

FIG. 6 is a signal flow illustrating a method for changing an NB access mode by a cell load distribution necessity factor at an NB of a wireless communication system according to an embodiment of the present invention;

FIG. 7 is a signal flow illustrating a management method for determining, at an NB, an access mode, and reporting the access mode to a Core Network (CN) in a wireless communication system according to an embodiment of the present invention;

FIG. 8 is a signal flow illustrating a management method for determining, at a CN, an access mode of an NB and reporting the access mode to the NB in a wireless communication system according to an embodiment of the present invention;

FIG. 9 is a signal flow illustrating a management method for requesting, by a neighbor NB, an NB to change an access mode for the purpose of reducing an inter-cell interference in a wireless communication system according to an embodiment of the present invention;

FIG. 10 is a signal flow illustrating a management method for requesting, by a neighbor NB, an NB to change an access mode for the purpose of reducing an inter-cell interference in a wireless communication system according to an embodiment of the present invention;

FIG. 11 is a signal flow illustrating an operating method for cases 1 and 2 for changing an access mode of an NB from a hybrid access mode or an open access mode to a closed access mode in a wireless communication system according to an embodiment of the present invention;

FIG. 12 is a signal flow illustrating an operating method for case 3 for changing an access mode of an NB from a closed access mode to a hybrid access mode in a wireless communication system according to an embodiment of the present invention;

FIG. 13 is a signal flow illustrating an operating method for case 3 for changing an access mode of an NB from a closed access mode to a hybrid access mode in a wireless communication system according to an embodiment of the present invention;

FIG. 14 is a signal flow illustrating an operating method for case 3 for changing an access mode of an NB from a closed access mode to a hybrid access mode in a wireless communication system according to an embodiment of the present invention;

FIG. 15 is a signal flow illustrating an operating method for case 4 for changing an access mode of an NB from an open access mode to a hybrid access mode in a wireless communication system according to an embodiment of the present invention;

FIG. 16 is a flowchart illustrating an operating method of an NB, for changing an access mode of a neighbor NB according to a request from the NB in a wireless communication system according to an embodiment of the present invention;

FIG. 17 is a flowchart illustrating an operating method of a neighbor NB, for changing an access mode of the neighbor NB according to a request from an NB in a wireless communication system according to an embodiment of the present invention;

FIG. 18 is a flowchart illustrating an operating method of an NB, for changing an access mode of the NB according to a request from the NB in a wireless communication system according to an embodiment of the present invention; and

FIG. 19 is a block diagram illustrating an NB according to an embodiment of the present invention.

Throughout the drawings, like reference numerals will be understood to refer to like parts, components and structures.

DETAILED DESCRIPTION

- Top of Page


OF EMBODIMENTS OF THE INVENTION

Various embodiments of the present invention are described herein below. The matters defined in the description such as detailed constructions and elements are provided to assist in a comprehensive understanding of the embodiments of the invention. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the invention. Also, descriptions of well-known functions and constructions are omitted for clarity and conciseness.

In the following description, a wireless communication system denotes, for example, a communication system that uses an Orthogonal Frequency Division Multiplexing (OFDM) scheme or an Orthogonal Frequency Division Multiple Access (OFDMA) scheme. Although certain embodiments of the present invention are described using a broadband wireless access communication system as an example, the present invention is also applicable to different wireless communication systems.

In the following description, an NB may be a macro NB or a femto NB. Further, an NB that operates in an open access mode is referred to as an open NB, an NB that operates in a closed access mode is referred to as a closed NB, and an NB that operates in a hybrid access mode is referred to as a hybrid NB. In addition, a UE that is registered in an NB that operates in the closed access mode and that is granted access is referred to as a closed user or a Closed Subscriber Group (CSG) UE, and the other UEs are referred to as open users or non-CSG UEs. Additionally, a coverage area of an NB that operates in an open access mode is referred to as an open cell, a coverage area of an NB that operates in a closed access mode is referred to as a closed cell, and a coverage area of an NB that operates in a hybrid access mode is referred to as a hybrid cell. Here, the closed cell may also be referred to as a CSG cell, and the open cell and the hybrid cell may also be referred to as a non-CSG cell.

In the following description, a Core Network (CN) denotes a Mobile Management Entity (MIME), a Serving General packet radio service (GPRS) Support Node (SGSN), a Mobile Switching Center (MSC), an Access Control Router (ACR), Operations & Maintenance (OAM), a Gate-Way(GW), etc.

The determination to change a current access mode and selection of a new access mode of the NB may be performed right after a new NB is installed or power is turned on, and an access mode change during an operation may be performed due to the following other factors. Also, an access mode change may be performed right after a new NB is installed or power is turned on due to the following other factors.

1. Interference factor: When neighbor NBs use the same frequency and a non-CSG UE receives a service from an NB that utilizes an open access mode, i.e., an open NB, or an NB that utilizes a hybrid access mode, i.e., a hybrid NB, enters a coverage of an NB hat utilizes a closed access mode, i.e., a closed NB, a serious interference factor is generated between the neighbor NBs that use the different access modes, seriously deteriorating communication quality. In this case, to reduce the interference generated between the neighbor NBs, the closed NB may provide a service by temporarily changing its access mode and granting access to a non-CSG UE.

2. Load distribution necessity factor: When an amount of communication in an area will greatly increase, e.g., during a concert or sporting event, and a load of a cell of an NB will increase, load distribution may be required. In this case, with respect to a closed NB, when the access mode is temporarily changed to an open access mode with permission of a person who has installed the closed NB, the load of the cell may be distributed without a separate procedure.

When a CSG UE registered in a femto NB is located inside a coverage of the femto NB in operation in the open access mode, the femto NB may provide a service by temporarily changing its access mode and allowing access by the CSG UE.

Due to the change of an NB access mode by the above-described factors, system information such as a Physical Cell Identifier (PCI) for identifying cells, a CSG indicator representing whether a cell is a CSG cell, a CSG IDentifier (ID) for identifying CSG cells, etc., is changed, and an NB notifies a UE that receives a service from the NB that the system information has changed and informs the UE of the changed system information.

FIG. 1 illustrates an example of an interference factor of an NB in a wireless communication system according to an embodiment of the present invention.

Referring to FIG. 1, when neighbor NBs (open or hybrid NB 110 and closed NB 120) use the same frequency band and a non-CSG UE 100 receives a service from an open NB or a hybrid NB 110 enters a coverage of a closed NB 120, interference is generated between the neighbor NBs that use the different access modes.

The open NB or hybrid NB 110, which is a serving NB of the non-CSG UE 100 may recognize that a CSG cell exists near the non-CSG UE 100 through a measurement report message of the non-CSG UE 100. That is, the serving NB 110 may recognize that a communication environment of the non-CSG UE 100 is degrading and that the CSG cell is transmitting a strong signal exists through the measurement report message of the non-CSG UE 100. At this point, the communication between the non-CSG UE 100 and the serving NB 110 becomes an interference factor acting on the CSG cell, and a strong signal that the non-CSG UE 100 receives from the CSG cell deteriorates communication quality of the non-CSG UE 100.

When the non-CSG UE 100 receives a strong signal in the CSG cell, and the non-CSG UE 100 causes interference while moving with low speed and remaining in the area, the serving NB 110 requests the closed NB 120 to change an access mode and allows the closed NB 120 to accept the non-CSG UE 100, thereby solving the interference problem.

FIG. 2 is a signal flow illustrating a method for changing an NB access mode by an interference factor at an NB of a wireless communication system according to an embodiment of the present invention.

Referring to FIG. 2, it is assumed that a CSG UE 210 is connected to a closed NB 230 and receives a service in step 201, and a non-CSG UE 200 is connected to a open or hybrid NB 220 and receives a service in step 203. Under these assumptions, the non-CSG UE 200 enters a coverage of the closed NB 230, the CSG UE 210 and the non-CSG UE 200 receive closed access system info.-message transmitted by the closed NB 230 in step 205 and step 207, respectively. The non-CSG UE 200 may detect a CSG cell that transmits a strong signal, and recognize a PCI of the detected CSG cell through the system info.-message received from the detected CSG cell. Therefore, the non-CSG UE 200 informs its serving NB, i.e., the open or hybrid NB 220, of the PCI of the CSG cell that transmits a strong signal by transmitting a measurement report message to the serving NB 220 in step 209.

The serving NB 220 that has received the measurement report message from the non-CSG UE 200 determines whether the non-CSG UE 200 receives interference from the neighbor CSG cell, which is greater than a reference level, based on the PCI included in the measurement report message. If the non-CSG UE 200 receives interference that is greater than the reference level from the neighbor CSG cell, the non-CSG UE 200 may reduce the interference of the UE and improve communication quality by handing over the UE to the neighbor CSG cell, such that it receives a service from the neighbor CSG cell, i.e., the closed NB 230, rather than receiving a service from the serving NB 220. Therefore, when determining that the non-CSG UE 200 receives interference greater than the reference level from the neighbor CSG cell, in step 211, the serving NB 220 determines to perform a handover of the non-CSG UE 200, and determines an access mode change request to the closed NB 230, i.e., target NB, so that the target NB 230 may allow access of the non-CSG UE 200. Here, to prevent the handover decision and access mode change request decision from frequently occurring, the handover decision and the access mode change request decision may be performed when the non-CSG UE 200 receives interference greater than the reference level from the neighbor CSG cell and the velocity of the non-CSG UE 200 is less than a reference level.

To handover the non-CSG UE 200 and request an access mode change by the closed NB 230, the serving NB 220 requests additional CSG cell information, such as an Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) Cell Global Identifier (ECGI), for more accurate cell identification than just the PCI, by transmitting an additional measurement control message to the non-CSG UE 200, in step 213. The non-CSG UE 200 collects the CSG cell information and transmits the collected information to the serving NB 220.

In step 215, the serving NB 220 transmits a Handover (HO) & access mode change request message to a CN 240 using the CSG cell information transmitted by the non-CSG UE 200. Here, the HO & access mode change request message requests the non-CSG UE 200 to perform a handover to the target NB 230, and requests the target NB 230 to change its access mode so that the non-CSG UE 200 may access the target NB 230. Though the handover request and the access mode change request are performed together in FIG. 2, they also may be performed separately, e.g., using two separate request messages.

The CN 240 controls an access mode of the target NB 230 in step 217. Specifically, when the CN 240 has an allowance authority regarding the handover and the access mode change, the CN 240 may determine whether to allow the handover and the access mode change through a separate handover & access mode change algorithm. However, when the CN 240 does not have the allowance authority regarding the handover and the access mode change, the CN 240 may determine allowance with respect to the handover and the access mode change unconditionally. When the CN 240 determines allowance regarding the handover of the non-CSG UE 200 and the access mode change of the target NB 230, the CN 240 transfers the HO & access mode change request message to the target NB 230 in step 219.

The target NB 230 controls its access mode in step 221. That is, the target NB 230 determines whether to accept the handover of the non-CSG UE 200, and determines whether to allow an access mode change so that the non-CSG UE 200 may access the target NB 230. When the target NB 230 is a femto NB, the target NB 230 may additionally receive an allowance from an owner of the femto NB to change the access mode.

The target NB 230 transmits an HO & access mode change response message including an access mode control result to the CN 240 in step 225, and the CN 240 transfers the HO & access mode change response message including a final access mode control result to the serving NB 220 in step 227. When allowance is determined with respect to the handover of the non-CSG UE 200 and the access mode change of the target NB 230 as the final access mode control result, the serving NB 220 orders the non-CSG UE 200 to perform the handover to the target NB 230 by transmitting a handover command message to the non-CSG UE 200 in step 229.

When the target NB 230 determines an allowance with respect to the handover of the non-CSG UE 200 and the access mode change of itself through the access mode control, the target NB 230 informs the CSG UE 210 that the access mode has changed, and accordingly the system information has changed, by transmitting a system information modification message to the CSG UE 210 in step 223. For example, the target NB 230 may change its access mode from a closed access mode to a hybrid access mode so that not only the CSG UE 210, but also the non-CSG UE 200, may access the target NB 230. In this case, the target NB 230 may transmit a hybrid access system info.-message including system information of the changed access mode to the CSG UE 210 and the non-CSG UE 200 in steps 231 and step 233.

In step 235, the non-CSG UE 200 accesses the target NB 230 and receives a service from the target NB 230 by performing a general handover procedure.

Though both the CN 240 and the target NB 230 perform the access mode control in FIG. 2, alternatively, only one of them may perform the access mode control.

In FIG. 2, the transfer of the HO & access mode change request message has been described using an example in which the serving NB 220 transfers the HO & access mode change request message to the target NB 230 via the CN 240. However, when direct communication, such as an X2 interface between NBs is possible, the serving NB 220 may directly transfer the HO & access mode change request message to the target NB 230, which will be described in more detail with reference to FIG. 3.

FIG. 3 is a signal flow illustrating a method for changing an NB access mode by an interference factor at an NB of a wireless communication system according to an embodiment of the present invention.

FIG. 3 is basically the same as FIG. 2, i.e., steps 201 to 213 of FIG. 2 are the same as steps 301 to 313 of FIG. 3, and thus, a repetitive description will be avoided.

Referring to FIG. 3, in step 315, a serving NB 320 transmits an HO & access mode change request message to a target NB 330 using CSG cell information transmitted by a non-CSG UE 300. Here, the HO & access mode change request message requests the non-CSG UE 300 to perform a handover to the target NB 330, and requests the target NB 330 to change its access mode so that the non-CSG UE 300 may access the target NB 330. Though the handover request and the access mode change request are performed together in FIG. 3, alternatively, they may be performed separately.

In step 317, the target NB 330 controls its access mode. That is, the target NB 330 determines whether to accept a call of the non-CSG UE 300, and determines whether to allow an access mode change so that the non-CSG UE 300 may access the target NB 330. If the target NB 330 is a femto NB, the target NB may additionally receiving an allowance from an owner of the femto NB to change the access mode.

When the target NB 330 determines an allowance with respect to the handover of the non-CSG UE 300 and the access mode change of the target NB 330, the target NB 330 transfers the HO & access mode change request message to a CN 340 in step 319.

In step 321, the CN 340 controls the access mode of the target NB 330. Specifically, when the CN 340 has an allowance authority regarding the handover and the access mode change, the CN 340 determines whether to allow the handover and the access mode change through a separate handover & access mode change algorithm. However, when the CN 340 does not have the allowance authority regarding the handover and the access mode change, the CN 340 may determine allowance with respect to the handover and the access mode change unconditionally.

The CN 340 transmits an HO & access mode change response message including an access mode control result to the target NB 330 in step 323, and the target NB 330 transfers an HO & access mode change response message including a final access mode control result to the serving NB 320 in step 327. When allowance is determined with respect to the handover of the non-CSG UE 300 and the access mode change of the target NB 330 as the final access mode control result, the serving NB 320 may order the non-CSG UE 300 to perform the handover to the target NB 330 by transmitting a handover command message to the non-CSG UE 300 in step 329.

When the target NB 330 determines an allowance with respect to the handover of the non-CSG UE 300 and its access mode change as the final access mode control result, the target NB 330 informs the CSG UE 310 that the access mode has changed, and accordingly that the system information has changed, by transmitting a system information modification message to the CSG UE 310 in step 325. For example, the target NB 330 may change its access mode to a hybrid access mode so that not only the CSG UE 310, but also the non-CSG UE 300, may access the target NB 330. In this case, the target NB 330 may transmit a hybrid access system info.-message including system information of the changed access mode to the CSG UE 310 and the non-CSG UE 300 in step 331 and step 333, respectively.

The non-CSG UE 300 accesses the target NB 330 and receives a service from the target NB 330 by performing a general handover procedure in step 335.

Though both the CN 340 and the target NB 330 perform the access mode control in FIG. 3, alternatively, only one of them may perform the access mode control. That is, the target NB 330 that has received an HO & access mode change request message from the serving NB 320 may directly transmit an HO & access mode change response message, including only an access mode control performance result of the target NB, to the serving NB 320.

FIG. 4 is a signal flow illustrating a method for changing an NB access mode by a cell load distribution necessity factor at an NB of a wireless communication system according to an embodiment of the present invention.

Referring to FIG. 4, it is assumed that a CSG UE 410 is connected to a closed NB 430 as a closed user to receive a service in step 401, and a non-CSG UE 400 is connected to an open or hybrid NB 420 as an open user to receive a service in step 405. In addition, it is assumed that the closed NB 430, which is a neighbor NB to the non-CSG UE 400, and open or hybrid NB, i.e., the serving NB, 420 of the non-CSG UE 400 transmit load info.-messages including cell load information to a CN 440 in step 403 and step 407, respectively. Based on these assumptions, the non-CSG UE 400 enters a coverage of the neighbor NB 430, the CSG UE 410 and the non-CSG UE 400 receive closed access system info.-messages transmitted by the neighbor NB 430 of the closed access mode in steps 409 and 411, respectively.

The CN 440 determines whether an NB whose cell load is greater than a reference level and an NB whose cell load is less than the reference level exist among NBs whose coverage areas overlap, based on the load information for each cell and an inter-NB coverage mapping table. If an NB whose cell load is greater than the reference level and an NB whose cell load is less than the reference level exist among the NBs with overlapping coverage areas, the CN 440 may distribute a cell load by changing an access mode of the NB whose cell load is less than the reference level so that a UE that receives a service from an NB whose cell load is greater than the reference level may perform a handover to the NB whose cell load is less than the reference level.

Referring to FIG. 4, when an NB whose cell load is greater than the reference level and an NB whose cell load is less than the reference level exist among the NBs with overlapping coverage areas, the CN 440 determines whether to request the NB whose cell load is less than the reference level to change an access mode in step 413. For example, when the coverage areas of the serving NB 420 and the neighbor NB 430 of the non-CSG UE 400 overlap each other, and the cell load of the serving NB 420 is greater than the reference level and the cell load of the neighbor NB 430 is less than the reference level, the CN 440 determines to request the neighbor NB 430 to change an access mode so that the non-CSG UE 400 may perform a handover to the neighbor NB 430 whose cell load is less than the reference level and receive service from the neighbor NB 430.

In step 415, the CN 440 transmits an access mode change request message to the neighbor NB 430. Here, the access mode change request message requests the neighbor NB 430 to change its access mode so that the non-CSG UE 400 may access the neighbor NB 430.

In step 417, the neighbor NB 430 controls its access mode. Specifically, the neighbor NB 430 determines whether to allow its access mode to change so that the non-CSG UE 400 may access the neighbor NB 430. When the neighbor NB 430 is a femto NB, the neighbor NB may additionally receive an allowance from an owner of the femto NB to change its access mode. That is, the neighbor NB may transmit an access mode change request message to the owner 410 of the femto NB and receive an access mode change response message from the owner 410 of the femto NB in step 419.

In step 421, the neighbor NB 430 transmits an access mode change response message including an access mode control result to the CN 440. When determining an allowance with respect to its access mode, the neighbor NB 430 informs the CSG UE 410 that the access mode has changed, and accordingly, that the system information has changed, by transmitting a system information modification message to the CSG UE 410 in step 423. For example, the neighbor NB 430 may change its access mode to a hybrid access mode so that not only the CSG UE 410, but also the non-CSG UE 400, may access the neighbor NB 430. In this case, the neighbor NB 430 may transmit a hybrid access system info.-message including system information of the changed access mode to the CSG UE 410 and the non-CSG UE 400 in steps 425 and 427, respectively.

In step 429, the non-CSG UE 400 generates a measurement report message based on the system info.-message received from the neighbor NB 430, and transmits the same to the serving NB 420. The serving NB 420 determines a handover of the non-CSG UE 400 based on the measurement report message in step 431. When the serving NB transmits a handover command message to the non-CSG UE 400 according to the handover decision of the non-CSG UE 400, the non-CSG UE 400 is connected to the neighbor NB 430 and receives a service from the neighbor NB 430 by performing a general handover procedure in step 433.

In FIG. 4, the CN 440 requests an NB whose cell load is less than a reference level to change an access mode to allow a UE inside a coverage area of an NB whose cell load is greater than the reference level to access the NB whose cell load is less than the reference level and receive service from the NB whose cell load is less than the reference level. Specifically, FIG. 4 illustrates the changing an access mode of an NB based on a request by a CN. However, it is also possible for an access mode of an NB to be changed based on a request of a neighbor NB. That is, an NB whose cell load is greater than a reference level may request an NB whose cell load is less than the reference level to change an access mode, which will be described in more detail with reference to FIG. 5.




← Previous       Next →

Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Apparatus and method for managing an access mode of a node b in a wireless communication system patent application.
###
monitor keywords

Browse recent Samsung Electronics Co., Ltd. patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Apparatus and method for managing an access mode of a node b in a wireless communication system or other areas of interest.
###


Previous Patent Application:
Allocating bandwidth in a resilient packet ring network by pi controller
Next Patent Application:
Switching between mimo and receiver beam forming in a peer-to-peer network
Industry Class:
Multiplex communications
Thank you for viewing the Apparatus and method for managing an access mode of a node b in a wireless communication system patent info.
- - -

Results in 0.02663 seconds


Other interesting Freshpatents.com categories:
Medical: Surgery Surgery(2) Surgery(3) Drug Drug(2) Prosthesis Dentistry  

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.1509

66.232.115.224
Next →
← Previous
     SHARE
  
     

stats Patent Info
Application #
US 20100309782 A1
Publish Date
12/09/2010
Document #
12797271
File Date
06/09/2010
USPTO Class
370229
Other USPTO Classes
370328
International Class
/
Drawings
20


Your Message Here(14K)



Follow us on Twitter
twitter icon@FreshPatents

Samsung Electronics Co., Ltd.

Browse recent Samsung Electronics Co., Ltd. patents

Multiplex Communications   Data Flow Congestion Prevention Or Control  

Browse patents:
Next →
← Previous