Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
NextPrevious

Armored fiber optic assemblies and methods of forming fiber optic assemblies




Title: Armored fiber optic assemblies and methods of forming fiber optic assemblies.
Abstract: Cables have dielectric armor with an armor profile that resembles conventional metal armored cable. The armor can be formed as a single layer, without requiring an outer jacket layer. The dielectric armor provides additional crush and impact resistance for the optical fibers and/or fiber optic assembly therein. The armored cables recover substantially from deformation caused by crush loads. Additionally, the armored fiber optic assemblies can have any suitable flame and/or smoke rating for meeting the requirements of the intended space. The assemblies can additionally be lightweight and relatively inexpensive to manufacture. ...

USPTO Applicaton #: #20100278492
Inventors: Gregory B. Bohler, Julian L. Greenwood, Iii, Keith A. Greer, Wesley B. Nicholson, Kimberly D. Slan


The Patent Description & Claims data below is from USPTO Patent Application 20100278492, Armored fiber optic assemblies and methods of forming fiber optic assemblies.

PRIORITY APPLICATION

This application claims the benefit of U.S. Provisional Application No. 61/174,059, filed Apr. 30, 2009, the entire contents of which are hereby incorporated by reference.

RELATED APPLICATIONS

This application is related to U.S. App. No. 12/261,645, filed Oct. 30, 2008, issued as U.S. Pat. No. 7,702,203 on Apr. 20, 2010, to U.S. Prov. App. 61/168,005, filed Apr. 9, 2009, and to U.S. App. No. 12/748,925, filed Mar. 29, 2010, the entire contents of which are hereby incorporated by reference.

TECHNICAL FIELD

- Top of Page


The present disclosure relates to optical fiber assemblies, and in particular relates to fiber optic assemblies having dielectric armor.

BACKGROUND

- Top of Page


Fiber optic cables and assemblies should preserve optical performance when deployed in the intended environment while also satisfying any other requirements for the environment. Indoor cables for riser and/or plenum spaces, for example, may require certain flame-retardant ratings as well as mechanical requirements. Mechanical characteristics such as crush performance, permissible bend radii, and temperature performance in part determine how installation and use of the cable in the installation space affect optical performance of the cable.

Certain conventional indoor riser applications use a fiber optic cable disposed within a metallic interlocking armor layer. “BX armor” or “Type AC” cables utilize such armors. BX armor is wound spirally about the fiber optic cable so that the edges of the adjacent wraps of armor mechanically interlock to form an armor layer. Interlocking armors are robust but expensive to install. In particular, the metallic armor must be grounded in order to meet electrical safety standards. FIG. 1 shows several prior art examples of interlocking armored cables 10 having a metallic (typically aluminum) armor layer 12. The metallic armor layer 12 must be grounded, for example, in order to comply with the National Electrical Code (NFPA 120) safety standard. Additionally, the metallic armor 12 can be plastically deformed (i.e., permanently deformed) under crush loads, which can pinch the cable and cause permanently elevated levels of optical attenuation that remain after the crush load is released.

Manufacturers have attempted to design dielectric armor cables to overcome the drawbacks of conventional metallic armor constructions. U.S. Pat. No. 7,064,276 discloses a dielectric armor cable having two synthetic resin layers where the hard resin layer has a continuous spiral groove cut completely through the hard resin layer along the length of the armor. The hard adjoining edge portions of the spiral groove abut to inhibit bending below a certain radius. However, one skilled in the art would recognize this design does not provide the craft with all of the desired features. Moreover, it can be difficult for the craft to recognize the cable of the '276 patent as an armored cable layered because it has a smooth outer surface, whereas conventional metal armored cables as depicted by FIG. 1 are easily identified by the craft.

SUMMARY

- Top of Page


The disclosure is directed to armored fiber optic assemblies having a dielectric armor and methods for manufacturing cables having dielectric armor. The dielectric armor can have an armor profile resembling conventional metal armored cables. The dielectric armor provides crush and impact resistance to the optical fibers and/or fiber optic assembl(ies) therein. After being subjected to crush loads, the dielectric armor recovers to substantially recover or to wholly recover its original shape. The dielectric armor is also advantageous in that it provides desired mechanical performance without requiring the time and expense of grounding during installation.

According to another aspect of the present embodiments, the armored fiber optic assemblies can have suitable flame and/or smoke ratings for spaces such as plenum and riser applications.

According to yet another aspect of the present embodiments, an exterior cable jacket can be omitted from the armored fiber optic assemblies to reduce manufacturing time. The cost of materials used to form the assemblies is also reduced.

It is to be understood that both the foregoing general description and the following detailed description present embodiments of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

- Top of Page


The accompanying drawings are included to provide further understanding of the invention. The drawings illustrate the various example embodiments of the invention and, together with the description, serve to explain the principals and operations of the invention.

FIG. 1 is a perspective view of three different prior art interlocking armor cables.

FIG. 2 is a side cut-away view of a first example embodiment of a fiber optic assembly having a dielectric armor.

FIG. 3 is a perspective view of the armored fiber optic assembly of FIG. 2 showing a partial longitudinal cross-section of the dielectric armor.

FIG. 4 is a partial cross-section of the armored fiber optic assembly of FIG. 2 taken along the line 4-4 showing only the armor and the core fiber optic assembly jacket.

FIG. 5 illustrates a test apparatus for applying crush loads to fiber optic assemblies.

FIG. 6 is a close-up view of the armored fiber optic assembly of FIG. 2 showing a partial longitudinal cross-section of the dielectric armor superimposed on a grid for reference of the shape of the armor.

FIG. 7 is an enlarged view of a portion of the dielectric armor further showing various dimensions associated therewith.

FIG. 8 is an enlarged perspective view of a portion of a generic armored profile showing the geometry of used for finite-element modeling of the dielectric armor.

FIG. 9 is a schematic diagram of an explanatory extrusion system for making dielectric armor.

FIG. 10 is a schematic cross-sectional view of the crosshead of the extrusion system of FIG. 9.

FIG. 11 is a schematic side view illustrating another method of forming dielectric armor.

FIG. 12 is a partial, cross-sectional view of another explanatory example of a crosshead wherein the profiling feature is within the crosshead die.

FIG. 13 is a side view of an example extrusion system wherein the profiling feature is located external to the crosshead and impresses the profile into the dielectric armor.

FIG. 14 is a perspective view of an example roller-type deforming member that is used to impress the armor profile into the dielectric armor.

FIG. 15 is a front view illustrating the use of two roller-type deforming members to impress the armor profile into the dielectric armor.




← Previous       Next → Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Armored fiber optic assemblies and methods of forming fiber optic assemblies patent application.
###
monitor keywords

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Armored fiber optic assemblies and methods of forming fiber optic assemblies or other areas of interest.
###


Previous Patent Application:
Self healing optical fiber cable assembly and method of making the same
Next Patent Application:
Flat drop cable
Industry Class:
Optical waveguides
Thank you for viewing the Armored fiber optic assemblies and methods of forming fiber optic assemblies patent info.
- - -

Results in 0.16215 seconds


Other interesting Freshpatents.com categories:
Software:  Finance AI Databases Development Document Navigation Error

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-5.6743

66.232.115.224
Next →
← Previous

stats Patent Info
Application #
US 20100278492 A1
Publish Date
11/04/2010
Document #
File Date
12/31/1969
USPTO Class
Other USPTO Classes
International Class
/
Drawings
0




Follow us on Twitter
twitter icon@FreshPatents



Optical Waveguides   Optical Transmission Cable   Tightly Confined (i.e., Fiber Tightly Held Inside The Outer Sheath)   With Armoring  

Browse patents:
Next →
← Previous
20101104|20100278492|armored fiber optic assemblies and methods of forming fiber optic assemblies|Cables have dielectric armor with an armor profile that resembles conventional metal armored cable. The armor can be formed as a single layer, without requiring an outer jacket layer. The dielectric armor provides additional crush and impact resistance for the optical fibers and/or fiber optic assembly therein. The armored cables |