Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next
Prev

Component based interface to handle tasks during claim processing




Title: Component based interface to handle tasks during claim processing.
Abstract: A computer program is provided for developing component based software capable of handling insurance-related tasks. The program includes a data component that stores, retrieves and manipulates data utilizing a plurality of functions. Also provided is a client component that includes an adapter component that transmits and receives data to/from the data component. The client component also includes a business component that serves as a data cache and includes logic for manipulating the data. A controller component is also included which is adapted to handle events generated by a user utilizing the business component to cache data and the adapter component to ultimately persist data to a data repository. In use, the client component is suitable for receiving a plurality of tasks that achieve an insurance-related goal upon completion, allowing users to add new tasks that achieve the goal upon completion, allowing the users to edit the tasks, and generating a historical record of the tasks that are completed. ...


Browse recent Accenture Llp patents


USPTO Applicaton #: #20100205013
Inventors: George V. Guyan, Robert H. Pish


The Patent Description & Claims data below is from USPTO Patent Application 20100205013, Component based interface to handle tasks during claim processing.

FIELD OF THE INVENTION

- Top of Page


The present invention relates to task management and more particularly to handling task during insurance claim processing utilizing a computer system.

BACKGROUND

- Top of Page


OF THE INVENTION

Computers have become a necessity in life today. They appear in nearly every office and household worldwide. A representative hardware environment is depicted in prior art FIG. 1, which illustrates a typical hardware configuration of a workstation having a central processing unit 110, such as a microprocessor, and a number of other units interconnected via a system bus 112. The workstation shown in FIG. 1 includes a Random Access Memory (RAM) 114, Read Only Memory (ROM) 116, an I/O adapter 118 for connecting peripheral devices such as disk storage units 120 to the bus 112, a user interface adapter 122 for connecting a keyboard 124, a mouse 126, a speaker 128, a microphone 132, and/or other user interface devices such as a touch screen (not shown) to the bus 112, communication adapter 134 for connecting the workstation to a communication network (e.g., a data processing network) and a display adapter 136 for connecting the bus 112 to a display device 138. The workstation typically has resident thereon an operating system such as the Microsoft Windows NT or Windows/95 Operating System (OS), the IBM OS/2 operating system, the MAC OS, or UNIX operating system.

Object oriented programming (OOP) has become increasingly used to develop complex applications. As OOP moves toward the mainstream of software design and development, various software solutions require adaptation to make use of the benefits of OOP. A need exists for these principles of OOP to be applied to a messaging interface of an electronic messaging system such that a set of OOP classes and objects for the messaging interface can be provided.

OOP is a process of developing computer software using objects, including the steps of analyzing the problem, designing the system, and constructing the program. An object is a software package that contains both data and a collection of related structures and procedures. Since it contains both data and a collection of structures and procedures, it can be visualized as a self-sufficient component that does not require other additional structures, procedures or data to perform its specific task. OOP, therefore, views a computer program as a collection of largely autonomous components, called objects, each of which is responsible for a specific task. This concept of packaging data, structures, and procedures together in one component or module is called encapsulation.

In general, OOP components are reusable software modules which present an interface that conforms to an object model and which are accessed at run-time through a component integration architecture. A component integration architecture is a set of architecture mechanisms which allow software modules in different process spaces to utilize each others capabilities or functions. This is generally done by assuming a common component object model on which to build the architecture. It is worthwhile to, differentiate between an object and a class of objects at this point. An object is a single instance of the class of objects, which is often just called a class. A class of objects can be viewed as a blueprint, from which many objects can be formed.

OOP allows the programmer to create an object that is a part of another object. For example, the object representing a piston engine is said to have a composition-relationship with the object representing a piston. In reality, a piston engine comprises a piston, valves and many other components; the fact that a piston is an element of a piston engine can be logically and semantically represented in OOP by two objects.

OOP also allows creation of an object that “depends from” another object. If there are two objects, one representing a piston engine and the other representing a piston engine wherein the piston is made of ceramic, then the relationship between the two objects is not that of composition. A ceramic piston engine does not make up a piston engine. Rather it is merely one kind of piston engine that has one more limitation than the piston engine; its piston is made of ceramic. In this case, the object representing the ceramic piston engine is called a derived object, and it inherits all of the aspects of the object representing the piston engine and adds further limitation or detail to it. The object representing the ceramic piston engine “depends from” the object representing the piston engine. The relationship between these objects is called inheritance.

When the object or class representing the ceramic piston engine inherits all of the aspects of the objects representing the piston engine, it inherits the thermal characteristics of a standard piston defined in the piston engine class. However, the ceramic piston engine object overrides these ceramic specific thermal characteristics, which are typically different from those associated with a metal piston. It skips over the original and uses new functions related to ceramic pistons. Different kinds of piston engines have different characteristics, but may have the same underlying functions associated with it (e.g., how many pistons in the engine, ignition sequences, lubrication, etc.). To access each of these functions in any piston engine object, a programmer would call the same functions with the same names, but each type of piston engine may have different/overriding implementations of functions behind the same name. This ability to hide different implementations of a function behind the same name is called polymorphism and it greatly simplifies communication among objects.

With the concepts of composition-relationship, encapsulation, inheritance and polymorphism, an object can represent just about anything in the real world. In fact, the logical perception of the reality is the only limit on determining the kinds of things that can become objects in object-oriented software. Some typical categories are as follows: Objects can represent physical objects, such as automobiles in a traffic-flow simulation, electrical components in a circuit-design program, countries in an economics model, or aircraft in an air-traffic-control system. Objects can represent elements of the computer-user environment such as windows, menus or graphics objects. An object can represent an inventory, such as a personnel file or a table of the latitudes and longitudes of cities. An object can represent user-defined data types such as time, angles, and complex numbers, or points on the plane.

With this enormous capability of an object to represent just about any logically separable matters, OOP allows the software developer to design and implement a computer program that is a model of some aspects of reality, whether that reality is a physical entity, a process, a system, or a composition of matter. Since the object can represent anything, the software developer can create an object which can be used as a component in a larger software project in the future.

If 90% of a new OOP software program consists of proven, existing components made from preexisting reusable objects, then only the remaining 10% of the new software project has to be written and tested from scratch. Since 90% already came from an inventory of extensively tested reusable objects, the potential domain from which an error could originate is 10% of the program. As a result, OOP enables software developers to build objects out of other, previously built objects.

This process closely resembles complex machinery being built out of assemblies and sub-assemblies. OOP technology, therefore, makes software engineering more like hardware engineering in that software is built from existing components, which are available to the developer as objects. All this adds up to an improved quality of the software as well as an increased speed of its development.

SUMMARY

- Top of Page


OF THE INVENTION

A computer program is provided for developing component based software capable of handling insurance-related tasks. The program includes a data component that stores, retrieves and manipulates data utilizing a plurality of functions. Also provided is a client component that includes an adapter component that transmits and receives data to/from the data component. The client component also includes a business component that serves as a data cache and includes logic for manipulating the data. A controller component is also included which is adapted to handle events generated by a user utilizing the business component to cache data and the adapter component to ultimately persist data to a data repository. In use, the client component is suitable for receiving a plurality of tasks that achieve an insurance-related goal upon completion, allowing users to add new tasks that achieve the goal upon completion, allowing the users to edit the tasks, and generating a historical record of the tasks that are completed.

DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages are better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which:

Prior Art FIG. 1 is a schematic diagram of the present invention; and

FIG. 2A is block diagram of one embodiment of the present invention.

FIG. 2B is a flowchart showing how components generally operate in accordance with one embodiment of the present invention.

FIG. 2C is a flowchart showing how the UI Controller operates in accordance with one embodiment of the present invention.

FIG. 2D is a flowchart showing the interactions between the CCA, the CCI, and the Server Component in accordance with one embodiment of the present invention.

FIG. 3 shows the life cycle of a typical User Interface and the standard methods that are part of the Window Processing Framework.




← Previous       Next →
Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Component based interface to handle tasks during claim processing patent application.

###


Browse recent Accenture Llp patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Component based interface to handle tasks during claim processing or other areas of interest.
###


Previous Patent Application:
Account level participation for underwriting components
Next Patent Application:
Method and system for providing response services
Industry Class:
Data processing: financial, business practice, management, or cost/price determination
Thank you for viewing the Component based interface to handle tasks during claim processing patent info.
- - -

Results in 0.16242 seconds


Other interesting Freshpatents.com categories:
Tyco , Unilever , 3m

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2015

66.232.115.224
Browse patents:
Next
Prev

stats Patent Info
Application #
US 20100205013 A1
Publish Date
08/12/2010
Document #
File Date
12/31/1969
USPTO Class
Other USPTO Classes
International Class
/
Drawings
0




Follow us on Twitter
twitter icon@FreshPatents

Accenture Llp


Browse recent Accenture Llp patents



Data Processing: Financial, Business Practice, Management, Or Cost/price Determination   Automated Electrical Financial Or Business Practice Or Management Arrangement   Insurance (e.g., Computer Implemented System Or Method For Writing Insurance Policy, Processing Insurance Claim, Etc.)  

Browse patents:
Next
Prev
20100812|20100205013|component based interface to handle tasks during claim processing|A computer program is provided for developing component based software capable of handling insurance-related tasks. The program includes a data component that stores, retrieves and manipulates data utilizing a plurality of functions. Also provided is a client component that includes an adapter component that transmits and receives data to/from the |Accenture-Llp
';