FreshPatents.com Logo
stats FreshPatents Stats
3 views for this patent on FreshPatents.com
2011: 1 views
2010: 2 views
Updated: January 23 2015
newTOP 200 Companies
filing patents this week



Advertise Here
Promote your product, service and ideas.

    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next →
← Previous

Methods and compositions for improving cognitive function


Title: Methods and compositions for improving cognitive function.
Abstract: This invention relates to treating age-related cognitive impairment. This invention in particular relates to the use of inhibitors of synaptic vesicle protein 2A (SV2A), such as levetiracetam, seletracetam, and brivaracetam, in improving cognitive function in subjects that exhibit age-related cognitive impairment or are at risk thereof, including, without limitation, subjects having or at risk for Mild Cognitive Impairment (MCI), Age-related Cognitive Decline (ARCD) or Age-Associated Memory Impairment (AAMI). ...


USPTO Applicaton #: #20100099735 - Class: $ApplicationNatlClass (USPTO) -
Inventors: Michela Gallagher, Rebecca Haberman, Ming Teng Koh



view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20100099735, Methods and compositions for improving cognitive function.

This application claims priority and benefit from U.S. Provisional Patent Applications 61/105,847 (filed Oct. 16, 2008), 61/152,631 (filed Feb. 13, 2009) and 61/175,536 (filed May 5, 2009). The contents and disclosures of each of these prior provisional applications are incorporated herein by reference in their entirety.

FIELD OF THE INVENTION

- Top of Page


This invention relates to methods and compositions for treating age-related cognitive impairment. In particular, it relates to the use of inhibitors of synaptic vesicle glycoprotein 2A (SV2A) in treating age-related cognitive impairment in a subject in need or at risk thereof, including, without limitation, subjects having or at risk for Mild Cognitive Impairment (MCI), Age-Associated Memory Impairment (AAMI) or Age Related Cognitive Decline (ARCD).

BACKGROUND OF THE INVENTION

- Top of Page


Cognitive ability may decline as a normal consequence of aging. Moreover, a significant population of elderly adults experiences a decline in cognitive ability that exceeds what is typical in normal aging.

Such age-related loss of cognitive function is characterized clinically by progressive loss of memory, cognition, reasoning, and judgment. Mild Cognitive Impairment (MCI), Age-Associated Memory Impairment (AAMI), Age-Related Cognitive Decline (ARCD) or similar clinical groupings are among those related to such age-related loss of cognitive function. According to some estimates, there are more than 16 million people with AAMI in the U.S. alone (Barker et al., 1995), and MCI is estimated to affect 5.5-7 million in the U.S. over the age of 65 (Plassman et al., 2008) There is, therefore, a need for effective treatment for age-related cognitive impairment and to improve cognitive function in patients diagnosed with MCI, AAMI, ARCD and similar age-associated cognitive impairments or at risk of developing them.

SUMMARY

- Top of Page


OF THE INVENTION

In accordance with a first aspect of the present invention, there is provided a method for treating age-related cognitive impairment in a subject in need or at risk thereof, the method comprising the step of administering to said subject a therapeutically effective amount of a synaptic vesicle protein 2A (SV2A) inhibitor or a pharmaceutically acceptable salt thereof. In certain embodiments of the invention, the SV2A inhibitor is selected from the group of SV2A inhibitors referred to in International Patent Application WO 2001/062726, International Patent Application WO 2002/094787, International Patent Application WO 2004/087658, U.S. Pat. No. 7,244,747, International Patent Application WO 2007/065595, US Patent Application 2008/0081832, International Patent Application WO 2006/128692, International Patent Application WO 2006/128693, UK Patent No. 1,039,113, and UK Patent No. 1,309,692. In certain embodiments of the invention, the SV2A inhibitor is selected from the group of levetiracetam, brivaracetam, and seletracetam or pharmaceutically acceptable salts thereof. In certain embodiments of the invention, the SV2A inhibitor or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a dose of about 0.1 to 5 mg/kg, or about 1 to 2 mg/kg, or about 0.1 to 0.2 mg/kg, or about 0.01 to 2.5 mg/kg, or about 0.1-2.5 mg/kg, or about 0.4-2.5 mg/kg, or about 0.6-1.8 mg/kg, or about 0.04-2.5 mg/kg or about 0.06-1.8 mg/kg.

In accordance with a second aspect of the present invention, there is provided a method for treating age-related cognitive impairment in a subject in need or at risk thereof, the method comprising the step of administering to said subject an SV2A inhibitor or a pharmaceutically acceptable salt thereof in combination with valproate or an analog or a derivative or a pharmaceutically acceptable salt thereof. In certain embodiments of the invention, valproate is administered at a daily dose such that the subject maintains a blood total valproate level of 0.5 to 5 μg/ml plasma, and the SV2A inhibitor is administered at a daily dose of is 0.01 to 1 mg/kg. In certain embodiments of the invention, valproate is administered at a daily dose such that the subject maintains a blood total valproate level of 0.5 to 5 μg/ml plasma, and the SV2A inhibitor is administered at a daily dose of 0.001 to 1 mg/kg. In certain embodiments of the invention, the SV2A inhibitor is selected from the group of SV2A inhibitors referred to in International Patent Application WO 2001/062726, International Patent Application WO 2002/094787, International Patent Application WO 2004/087658, U.S. Pat. No. 7,244,747, International Patent Application WO 2007/065595, US Patent Application 2008/0081832, International Patent Application WO 2006/128692, International Patent Application WO 2006/128693, UK Patent No. 1,039,113, and UK Patent No. 1,309,692. In certain embodiments of the invention, the SV2A inhibitor is selected from the group of levetiracetam, brivaracetam, and seletracetam or pharmaceutically acceptable salts thereof. In certain embodiments of the invention, the SV2A inhibitor or a pharmaceutically acceptable salt thereof and valproate or an analog or a derivative or a pharmaceutically acceptable salt thereof are administered simultaneously, sequentially, or as a single formulation.

In accordance with a third aspect of the present invention, there is provided a pharmaceutical composition for improving cognitive function in a subject with age-related cognitive impairment or at risk thereof, the composition comprising a SV2A inhibitor or a pharmaceutically acceptable salt thereof. In certain embodiments of the invention, the SV2A inhibitor is present in an amount of 5-140 mg. In other embodiments of the invention, the SV2A inhibitor is present in an amount of 0.7-180 mg.

In accordance with a fourth aspect of the present invention, there is provided a pharmaceutical composition for improving cognitive function in a subject with age-related cognitive impairment or at risk thereof, the composition comprising a SV2A inhibitor or a pharmaceutically acceptable salt thereof and valproate or an analog or a derivative or a pharmaceutically acceptable salt thereof. In certain embodiments of the invention, the SV2A inhibitor is present in an amount of 3-50 mg. In other embodiments of the invention, the SV2A inhibitor is present in an amount of 0.07-50 mg.

In accordance with a fifth aspect of the present invention, there is provided a method for treating age-related cognitive impairment in a subject in need or at risk thereof, the method comprising the step of administering to said subject a therapeutically effective amount of levetiracetam or a pharmaceutically acceptable salt thereof. In certain embodiments of the invention, levetiracetam or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a daily dose of about 1-2 mg/kg. In certain embodiments of the invention, levetiracetam or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a daily dose of about 70-150 mg. In some embodiments of the invention, levetiracetam or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a daily dose of about 0.1-2.5 mg/kg. In some embodiments of the invention, levetiracetam or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a daily dose of about 7-180 mg. In some embodiments of the invention, levetiracetam or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a daily dose of about 0.4-2.5 mg/kg. In some embodiments of the invention, levetiracetam or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a daily dose of about 25-180 mg. In some embodiments of the invention, levetiracetam or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a daily dose of about 0.6-1.8 mg/kg. In some embodiments of the invention, levetiracetam or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a daily dose of about 40-130 mg.

In accordance with a sixth aspect of the present invention, there is provided a method for treating age-related cognitive impairment in a subject in need or at risk thereof, the method comprising the step of administering to said subject a therapeutically effective amount of brivaracetam or a pharmaceutically acceptable salt thereof. In certain embodiments of the invention, brivaracetam or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a daily dose of about 0.1-0.2 mg/kg. In certain embodiments of the invention, brivaracetam or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a daily dose of about 7-15 mg. In some embodiments of the invention, brivaracetam or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a daily dose of about 0.01-2.5 mg/kg. In some embodiments of the invention, brivaracetam or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a daily dose of about 0.7-180 mg. In some embodiments of the invention, brivaracetam or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a daily dose of about 0.04-2.5 mg/kg. In some embodiments of the invention, brivaracetam or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a daily dose of about 2.5-180 mg. In some embodiments of the invention, brivaracetam or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a daily dose of about 0.06-1.8 mg/kg. In some embodiments of the invention, brivaracetam or a pharmaceutically acceptable salt thereof is administered every 12 or 24 hours at a daily dose of about 4-130 mg.

In accordance with a seventh aspect of the present invention, there is provided a method for treating age-related cognitive impairment in a subject in need or at risk thereof, the method comprising the step of administering to said subject a therapeutically effective amount of seletracetam or a pharmaceutically acceptable salt thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

- Top of Page


FIG. 1 depicts increased mRNA expression of the gene encoding SV2A in the dentate gyms of the hippocampus of aged-impaired rats (AI) as compared to young rats (Y) and aged-unimpaired rats (AU). Normalized Affymetrix GeneChip probe set signal values (Y-axis), as a measure of mRNA expression, are plotted against learning indices of different rats, as a measure of cognitive impairment.

FIG. 2 depicts the effects of administering levetiracetam on the spatial memory retention of six aged-impaired rats (AI) in a Morris Water Maze (MWM) test. Three treatment conditions were employed: vehicle control, levetiracetam (5 mg/kg/day) and levetiracetam (10 mg/kg/day). The AI rats were trained for two consecutive days, with a one-time treatment prior to the training trials per day. 24 hours later, the AI rats were tested. The time the AI rats, 24 hours after treatment with the different conditions and two days of training, spent swimming in the target quadrant or the target annulus in a memory retention trial is used as a measure of spatial memory retention. The target quadrant refers to the quadrant of the maze (which is a circular pool) where the escape platform is placed during the training trials. The target annulus refers to the exact location of the escape platform during the training trials.

FIG. 3 depicts the effects of administering levetiracetam on the spatial memory retention of ten aged-impaired rats (AI) in an eight-arm Radial Arm Maze (RAM) test. Six treatment conditions were employed: vehicle control, levetiracetam (1.25 mg/kg/day), levetiracetam (2.5 mg/kg/day), levetiracetam (5 mg/kg/day), levetiracetam (10 mg/kg/day) and levetiracetam (20 mg/kg/day). In the RAM task used, there was a one-hour delay between presentation of a subset of arms (5 arms available and 3 arms blocked) and completion of the eight-arm win-shift task (eight arms available). Rats were pre-treated 30-40 minutes before daily trials with a one-time drug/control treatment. The number of errors made by the rats after the delay was used as a measure of spatial memory retention. Errors were defined as instances when rats entered an arm from which food had already been retrieved in the pre-delay component of the trial or when rats re-visited an arm in the post-delay session that had already been visited. Paired t-tests were used to compare the number of errors between different doses of levetiracetam and vehicle control.

DETAILED DESCRIPTION

- Top of Page


OF THE INVENTION

Unless otherwise defined herein, scientific and technical terms used in this application shall have the meanings that are commonly understood by those of ordinary skill in the art. Generally, nomenclature used in connection with, and techniques of, cell and tissue culture, molecular biology, cell and cancer biology, neurobiology, neurochemistry, virology, immunology, microbiology, pharmacology, genetics and protein and nucleic acid chemistry, described herein, are those well known and commonly used in the art.

The methods and techniques of the present invention are generally performed, unless otherwise indicated, according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout this specification. See, e.g. “Principles of Neural Science”, McGraw-Hill Medical, New York, N.Y. (2000); Motulsky, “Intuitive Biostatistics”, Oxford University Press, Inc. (1995); Lodish et al., “Molecular Cell Biology, 4th ed.”, W. H. Freeman & Co., New York (2000); Griffiths et al., “Introduction to Genetic Analysis, 7th ed.”, W. H. Freeman & Co., N.Y. (1999); Gilbert et al., “Developmental Biology, 6th ed.”, Sinauer Associates, Inc., Sunderland, Mass. (2000).

Chemistry terms used herein are used according to conventional usage in the art, as exemplified by “The McGraw-Hill Dictionary of Chemical Terms”, Parker S., Ed., McGraw-Hill, San Francisco, C.A. (1985).

All of the above, and any other publications, patents and published patent applications referred to in this application are specifically incorporated by reference herein. In case of conflict, the present specification, including its specific definitions, will control.

Throughout this specification, the word “comprise” or variations such as “comprises” or “comprising” will be understood to imply the inclusion of a stated integer (or components) or group of integers (or components), but not the exclusion of any other integer (or components) or group of integers (or components).

The singular forms “a,” “an,” and “the” include the plurals unless the context clearly dictates otherwise.

The term “including” is used to mean “including but not limited to”. “Including” and “including but not limited to” are used interchangeably.

The term “agent” is used herein to denote a chemical compound (such as an organic or inorganic compound, a mixture of chemical compounds), a biological macromolecule (such as a nucleic acid, an antibody, including parts thereof as well as humanized, chimeric and human antibodies and monoclonal antibodies, a protein or portion thereof, e.g., a peptide, a lipid, a carbohydrate), or an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian) cells or tissues. Agents include, for example, agents which are known with respect to structure, and those which are not known with respect to structure. The SV2A inhibitory activity of such agents may render them suitable as “therapeutic agents” in the methods and compositions of this invention.

A “patient”, “subject”, or “individual” are used interchangeably and refer to either a human or a non-human animal. These terms include mammals, such as humans, primates, livestock animals (including bovines, porcines, etc.), companion animals (e.g., canines, felines, etc.) and rodents (e.g., mice and rats).

“Cognitive function” or “cognitive status” refers to any higher order intellectual brain process or brain state, respectively, involved in learning and/or memory including, but not limited to, attention, information acquisition, information processing, working memory, short-term memory, long-term memory, anterograde memory, retrograde memory, memory retrieval, discrimination learning, decision-making, inhibitory response control, attentional set-shifting, delayed reinforcement learning, reversal learning, the temporal integration of voluntary behavior, and expressing an interest in one's surroundings and self-care.

In humans, cognitive function may be measured, for example and without limitation, by the clinical global impression of change scale (CIBIC-plus scale); the Mini Mental State Exam (MMSE); the Neuropsychiatric Inventory (NPI); the Clinical Dementia Rating Scale (CDR); the Cambridge Neuropsychological Test Automated Battery (CANTAB) or the Sandoz Clinical Assessment-Geriatric (SCAG). See Folstein et al., J Psychiatric Res 12: 189-98, (1975); Robbins et al., Dementia 5: 266-81, (1994); Rey, L'examen clinique en psychologie, (1964); Kluger et al., J Geriatr Psychiatry Neurol 12:168-79, (1999).

In animal model systems, cognitive function may be measured in various conventional ways known in the art, including using a Morris Water Maze (MWM), Barnes circular maze, elevated radial arm maze, T maze or any other mazes in which the animals use spatial information. Other tests known in the art may also be used to assess cognitive function, such as novel object recognition and odor recognition tasks.

Cognitive function may also be measured using imaging techniques such as Positron Emission Tomography (PET), functional magnetic resonance imaging (fMRI), Single Photon Emission Computed Tomography (SPECT), or any other imaging technique that allows one to measure brain function. In animals, cognitive function may also be measured with electrophysiological techniques.

“Age-related cognitive impairment” or “cognitive impairment” refers to cognitive function in aged subjects that is not as robust as that expected in an age-matched normal subject (i.e. subjects with mean scores for a given age in a cognitive test) or as that expected in young adult subjects. In some cases, cognitive function is reduced by about 5%, about 10%, about 30%, or more, compared to cognitive function expected in an age-matched normal subject. In some cases, cognitive function is as expected in an age-matched normal subject, but reduced by about 5%, about 10%, about 30%, about 50% or more, compared to cognitive function expected in a young adult subject. Age-related impaired cognitive function may be associated with Mild Cognitive Impairment (MCI), Age-Associated Memory Impairment (AAMI), and Age-related Cognitive Decline (ARCD).

“Promoting” cognitive function refers to affecting age-related impaired cognitive function so that it more closely resembles the function of an aged-matched normal, unimpaired subject, or the function of a young adult subject. Cognitive function may be promoted to any detectable degree, but in humans preferably is promoted sufficiently to allow an impaired subject to carry out daily activities of normal life at the same level of proficiency as an aged-matched normal, unimpaired subject or as a young adult subject.

“Preserving” cognitive function refers to affecting normal or impaired cognitive function such that it does not decline or does not fall below that observed in the subject upon first presentation or diagnosis, or delays such decline.

“Improving” cognitive function includes promoting cognitive function and/or preserving cognitive function in a subject.

“Mild Cognitive Impairment” or “MCI” refers to a condition characterized by isolated memory impairment unaccompanied other cognitive abnormalities and relatively normal functional abilities. One set of criteria for a clinical characterization of MCI specifies the following characteristics: (1) memory complaint (as reported by patient, informant, or physician), (2) normal activities of daily living (ADLs), (3) normal global cognitive function, (4) abnormal memory for age (defined as scoring more than 1.5 standard deviations below the mean for a given age), and (5) absence of indicators of dementia (as defined by DSM-IV guidelines). Petersen et al., Srch. Neurol. 56: 303-308 (1999); Petersen, “Mild cognitive impairment: Aging to Alzheimer's Disease.” Oxford University Press, N.Y. (2003).

Diagnosis of MCI usually entails an objective assessment of cognitive impairment, which can be garnered through the use of well-established neuropsychological tests, including the Mini Mental State Examination (MMSE), the Cambridge Neuropsychological Test Automated Battery (CANTAB) and individual tests such as Rey Auditory Verbal Learning Test (AVLT), Logical Memory Subtest of the revised Wechsler Memory Scale (WMS-R) and the New York University (NYU) Paragraph Recall Test. See Folstein et al., J Psychiatric Res 12: 189-98 (1975); Robbins et al., Dementia 5: 266-81 (1994); Kluger et al., J Geriatric Psychiatry Neurol 12:168-79 (1999).

“Age-Associate Memory Impairment (AAMI)” refers to a decline in memory due to aging. A patient may be considered to have AAMI if he or she is at least 50 years old and meets all of the following criteria: a) The patient has noticed a decline in memory performance, b) The patient performs worse on a standard test of memory compared to young adults, c) All other obvious causes of memory decline, except normal aging, have been ruled out (in other words, the memory decline cannot be attributed to other causes such as a recent heart attack or head injury, depression, adverse reactions to medication, Alzheimer's disease, etc.).

“Age-Related Cognitive Decline (ARCD)” refers to declines in memory and cognitive abilities that are a normal consequence of aging in humans (e.g., Craik & Salthouse, 1992). This is also true in virtually all mammalian species. Age-Associated Memory Impairment refers to older persons with objective memory declines relative to their younger years, but cognitive functioning that is normal relative to their age peers (Crook et al., 1986). Age-Consistent Memory Decline, is a less pejorative label which emphasizes that these are normal developmental changes (Crook, 1993; Larrabee, 1996), are not pathophysiological (Smith et al., 1991), and rarely progress to overt dementia (Youngjohn & Crook, 1993). The DSM-IV (1994) has codified the diagnostic classification of ARCD.

“Treating” a condition or patient refers to taking steps to obtain beneficial or desired results, including clinical results. Beneficial or desired clinical results include, but are not limited to, alleviation or amelioration of one or more symptoms associated with age-related cognitive impairment, delay or slowing of that impairment, amelioration, palliation or stabilization of that impairment, and other beneficial results, such as improvement of cognitive function or a reduced rate of decline of cognitive function in subjects with age-related cognitive impairment or at risk thereof.

“Administering” or “administration of” a substance, a compound or an agent to a subject can be carried out using one of a variety of methods known to those skilled in the art. For example, a compound or an agent can be administered, intravenously, arterially, intradermally, intramuscularly, intraperitonealy, intravenously, subcutaneously, ocularly, sublingually, orally (by ingestion), intranasally (by inhalation), intraspinally, intracerebrally, and transdermally (by absorbtion, e.g., through a skin duct). A compound or agent can also appropriately be introduced by rechargable or biodegradable polymeric devices or other devices, e.g., patches and pumps, or formulations, which provide for the extended, slow or controlled release of the compound or agent. Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods. In some aspects, the administration includes both direct administration, including self-administration, and indirect administration, including the act of prescribing a drug. For example, as used herein, a physician who instructs a patient to self-administer a drug, or to have the drug administered by another and/or who provides a patient with a prescription for a drug is administering the drug to the patient.

Appropriate methods of administering a substance, a compound or an agent to a subject will also depend, for example, on the age of the subject, whether the subject is active or inactive at the time of administering, whether the subject is cognitively impaired at the time of administering, the extent of the impairment, and the chemical and biological properties of the compound or agent (e.g. solubility, digestibility, bioavailability, stability and toxicity). Preferably, a compound or an agent is administered orally, e.g., to a subject by ingestion. In some embodiments, the orally administered compound or agent is in an extended release or slow release formulation, or administered using a device for such slow or extended release.

A “therapeutically effective amount” of a drug or agent is an amount of a drug or an agent that, when administered to a subject will have the intended therapeutic effect, e.g. improving cognitive function in a subject, e.g., a patient with age-related cognitive impairment or a patient at risk thereof. The full therapeutic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses. Thus, a therapeutically effective amount may be administered in one or more administrations. The precise effective amount needed for a subject will depend upon, for example, the subject's size, health and age, the nature and extent of the cognitive impairment, and the therapeutics or combination of therapeutics selected for administration, and the mode of administration. The skilled worker can readily determine the effective amount for a given situation by routine experimentation.

“Synaptic vesicle protein-2 (SV2)” is a family of synaptic vesicle proteins, which consists of three members, designated SV2A, SV2B, and SV2C. SV2A is the most widely distributed family member, being expressed ubiquitously in the brain. The proteins are integral membrane proteins and have a low-level homology (20-30%) to the twelve transmembrane family of bacterial and fungal transporter proteins that transport sugar, citrate, and xenobiotics (Bajjalieh et al., Science. 257: 1271-1273. (1992)). SV2 family proteins are present in the brain and endocrine cells, and further are present in all synaptic and endocrine vesicles. SV2 proteins are reported to play a role in normal synaptic function, and functions in a maturation step of primed vesicles that converts the vesicles into a Ca(2+)- and synaptotagmin-responsive state (Sudhof et al., 2009). Functionally, SV2 proteins are reported to enhance synaptic currents and increase the probability of transmitter release by maintaining the size of the readily releasable pool of vesicles (Custer et al., 2006).

“Inhibitor of SV2A” refers to any agent, substance or compound that binds to SV2A and reduces synaptic function by reducing pre-synaptic vesicle release (See, e.g., Noyer et al. 1995; Fuks et al. 2003; Lynch et al. 2004; Gillard et al. 2006; Custer et al., 2006; Smedt et al., 2007; Yang et al., 2007; and Example 8 of WO 2001/62726, all of which are specifically incorporated herein by reference.) A substance, or a compound or an agent is an inhibitor of SV2A even if it does not itself bind to SV2A, as long as it causes, or affects the ability of, another compound or agent to bind SV2A or reduce synaptic function by reducing pre-synaptic vesicle release Inhibitors of SV2A, as used herein, include pharmaceutically acceptable salts and solvates of the inhibitors thereof.

Among the SV2A inhibitors useful for the methods and compositions of this invention, are those compounds or agents referred to in: i) International Patent Application WO 2001/062726; ii) International Patent Application WO 2002/094787; iii) International Patent Application WO 2004/087658; iv) U.S. Pat. No. 7,244,747; and v) International Patent Application WO 2007/065595. Applicants also refer to methods of preparing these compounds found in the documents cited above. Other synthetic methods may also be used. These methods are well known to those skilled in the art.

i) International Patent Application WO 2001/062726:

A compound having the formula I or a pharmaceutically acceptable salt thereof,

wherein X is —CA1NR5R6 or —CA1OR7 or —CA1-R8 or CN;

A1 and A2 are independently oxygen, sulfur or —NR9;

R1 is hydrogen, alkyl, aryl or —CH2—R1a wherein R1a is aryl, heterocycle, halogen, hydroxy, amino, nitro or cyano;

R2, R3 and R4 are the same or different and each is independently hydrogen, halogen, hydroxy, thiol, amino, nitro, nitrooxy, cyano, azido, carboxy, amido, sulfonic acid, sulfonamide, alkyl, alkenyl, alkynyl, ester, ether, aryl, heterocycle, or an oxy derivative, thio derivative, amino derivative, acyl derivative, sulfonyl derivative or sulfinyl derivative;

R2a, R3a and R4a are the same or different and each is independently hydrogen, halogen, alkyl, alkenyl, alkynyl or aryl;

R5, R6, R7 and R9 are the same or different and each is independently hydrogen, hydroxy, alkyl, aryl, heterocycle or an oxy derivative; and

R8 is hydrogen, hydroxy, thiol, halogen, alkyl, aryl, heterocycle or a thio derivative;

with the provisos that at least one of as R2, R3, R2a, R3a and R4a is other than hydrogen; and that when the compound is a mixture of all possible isomers, X is —CONR5R6, A2 is oxygen and R1 is hydrogen, methyl, ethyl or propyl then substitution on the pyrollidine ring is other than mono-, di-, or tri-methyl or mono-ethyl; and that when R1, R2, R4, R2a, R3a and R4a are each hydrogen, A2 is oxygen and X is CONR5R6 then R3 is different from carboxy, ester, amido, substituted oxo-pyrrolidine, hydroxy, oxy derivative, amino, amino derivatives, methyl, naphthyl, phenyl optionally substituted by oxy derivatives or in the para position by an halogen atom.

In the definitions set forth below, unless otherwise stated, R11 and R12 are the same or different and each is independently amido, alkyl, alkenyl, alkynyl, acyl, ester, ether, aryl, aralkyl, heterocycle or an oxy derivative, thio derivative, acyl derivative, amino derivative, sulfonyl derivative, or sulfinyl derivative, each optionally substituted with any suitable group, including, but not limited to, one or more moieties selected from lower alkyl or other groups as described below as substituents for alkyl.

The term “oxy derivative”, as used herein is defined as including —O—R11 groups wherein R11 is as defined above except for “oxy derivative”. Non-limiting examples are alkoxy, alkenyloxy, alkynyloxy, acyloxy, oxyester, oxyamido, alkylsulfonyloxy, alkylsulfinyloxy, arylsulfonyloxy, arylsulfinyloxy, aryloxy, aralkoxy or heterocyclooxy such as pentyloxy, allyloxy, methoxy, ethoxy, phenoxy, benzyloxy, 2-naphthyloxy, 2-pyridyloxy, methylenedioxy, carbonate.

The term “thio derivative” as used herein, is defined as including-S—R11 groups wherein R11 is as defined above except for “thio derivative”. Non-limiting examples are alkylthio, alkenylthio, alkynylthio and arylthio.

The term “amino derivative” as used herein, is defined as including-NHR11 or —NR11R12 groups wherein R11 and R12 are as defined above. Non-limiting examples are mono- or di-alkyl-, alkenyl-, alkynyl- and arylamino or mixed amino.

The term “acyl derivative” as used herein, represents a radical derived from carboxylic acid and thus is defined as including groups of the formula R11—CO—, wherein R11 is as defined above and may also be hydrogen. Non-limiting examples are formyl, acetyl, propionyl, isobutyryl, valeryl, lauroyl, heptanedioyl, cyclohexanecarbonyl, crotonoyl, fumaroyl, acryloyl, benzoyl, naphthoyl, furoyl, nicotinoyl, 4-carboxybutanoyl, oxalyl, ethoxalyl, cysteinyl, oxamoyl.

The term “sulfonyl derivative” as used herein, is defined as including a group of the formula —SO2—R11, wherein R11 is as defined above except for “sulfonyl derivative”. Non-limiting examples are alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl and arylsulfonyl.

The term “sulfinyl derivative” as used herein, is defined as including a group of the formula —SO—R11, wherein R11 is as defined above except for “sulfinyl derivative”. Non-limiting examples are alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl and arylsulfinyl.

The term “alkyl”, as used herein, is defined as including saturated, monovalent hydrocarbon radicals having straight, branched or cyclic moieties or combinations thereof and containing 1-20 carbon atoms, preferably 1-6 carbon atoms for non-cyclic alkyl and 3-6 carbon atoms for cycloalkyl (in these two preferred cases, unless otherwise specified, “lower alkyl”). Alkyl moieties may optionally be substituted by 1 to 5 substituents independently selected from the group consisting of halogen, hydroxy, thiol, amino, nitro, cyano, thiocyanato, acyl, acyloxy, sulfonyl derivative, sulfinyl derivative, alkylamino, carboxy, ester, ether, amido, azido, cycloalkyl, sulfonic acid, sulfonamide, thio derivative, oxyester, oxyamido, heterocycle, vinyl, C1-5-alkoxy, C6-10-aryloxy and C6-10-aryl.

Preferred alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, iso or ter-butyl, and 2,2,2-trimethylethyl each optionally substituted by at least one substituent selected from the group consisting of halogen, hydroxy, thiol, amino, nitro and cyano, such as trifluoromethyl, trichloromethyl, 2,2,2-trichloroethyl, 1,1-dimethyl-2,2-dibromoethyl, 1,1-dimethyl-2,2,2-trichloroethyl.

The term “alkenyl” as used herein, is defined as including both branched and unbranched, unsaturated hydrocarbon radicals having at least one double bond such as ethenyl (=vinyl), 1-methyl-1-ethenyl, 2,2-dimethyl-1-ethenyl, 1-propenyl, 2-propenyl (=allyl), 1-butenyl, 2-butenyl, 3-butenyl, 4-pentenyl, 1-methyl-4-pentenyl, 3-methyl-1-pentenyl, 1-hexenyl, 2-hexenyl, and the like and being optionally substituted by at least one substituent selected from the group consisting of halogen, hydroxy, thiol, amino, nitro, cyano, aryl and heterocycle such as mono- and di-halo vinyl where halo is fluoro, chloro or bromo.

The term “alkynyl” as used herein, is defined as including a monovalent branched or unbranched hydrocarbon radical containing at least one carbon-carbon triple bond, for example ethynyl, 2-propynyl (=propargyl), and the like and being optionally substituted by at least one substituent selected from the group consisting of halogen, hydroxy, thiol, amino, nitro, cyano, aryl and heterocycle, such as haloethynyl.

When present as bridging groups, alkyl, alkenyl and alkynyl represent straight- or branched chains, C1-12, preferably C1-4-alkylene or C2-12-, preferably C2-4-alkenylene or -alkynylene moieties respectively.

Groups where branched derivatives are conventionally qualified by prefixes such as “n”, “sec”, “iso” and the like (e.g., “n-propyl”, “sec-butyl”) are in the n-form unless otherwise stated.

The term “aryl” as used herein, is defined as including an organic radical derived from an aromatic hydrocarbon consisting of 1-3 rings and containing 6-30 carbon atoms by removal of one hydrogen, such as phenyl and naphthyl each optionally substituted by 1 to 5 substituents independently selected from halogen, hydroxy, thiol, amino, nitro, cyano, acyl, acyloxy, sulfonyl, sulfinyl, alkylamino, carboxy, ester, ether, amido, azido, sulfonic acid, sulfonamide, alkylsulfonyl, alkylsulfinyl, alkylthio, oxyester, oxyamido, aryl, C1-6-alkoxy, C6-10-aryloxy, C1-6-alkyl, C1-6-haloalkyl. Aryl radicals are preferably monocyclic containing 6-10 carbon atoms. Preferred aryl groups are phenyl and naphthyl each optionally substituted by 1 to 5 substituents independently selected from halogen, nitro, amino, azido, C1-6-alkoxy, C1-6-alkylthio, C1-6-20 alkyl, C1-6-haloalkyl and phenyl.

The term “halogen”, as used herein, includes an atom of Cl, Br, F, I.

The term “hydroxy”, as used herein, represents a group of the formula —OH.

The term “thiol”, as used herein, represents a group of the formula —SH.

The term “cyano”, as used herein, represents a group of the formula —CN.

The term “nitro”, as used herein, represents a group of the formula —NO2.

The term “nitrooxy”, as used herein, represents a group of the formula —ONO2.

The term “amino”, as used herein, represents a group of the formula —NH2.

The term “azido”, as used herein, represents a group of the formula —N3.

The term “carboxy”, as used herein, represents a group of the formula —COOH.

The term “sulfonic acid”, as used herein, represents a group of the formula —SO3H.

The term “sulfonamide”, as used herein, represents a group of the formula —SO2NH2.

The term “ester”, as used herein is defined as including a group of formula —COO—R11 wherein R11 is as defined above except oxy derivative, thio derivative or amino derivative.

The term “ether” is defined as including a group selected from C1-50-straight or branched alkyl, or C2-50-straight or branched alkenyl or alkynyl groups or a combination of the same, interrupted by one or more oxygen atoms.

The term “amido” is defined as including a group of formula —CONH2 or —CONHR11 or —CONR11R12 wherein R11 and R12 are as defined above.

The term “heterocycle”, as used herein is defined as including an aromatic or non aromatic cyclic alkyl, alkenyl, or alkynyl moiety as defined above, having at least one O, S and/or N atom interrupting the carbocyclic ring structure and optionally, one of the carbon of the carbocyclic ring structure may be replaced by a carbonyl. Non-limiting examples of aromatic heterocycles are pyridyl, furyl, pyrrolyl, thienyl, isothiazolyl, imidazolyl, benzimidazolyl, tetrazolyl, quinazolinyl, quinolizinyl, naphthyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, quinolyl, isoquinolyl, isobenzofuranyl, benzothienyl, pyrazolyl, indolyl, indolizinyl, purinyl, isoindolyl, carbazolyl, thiazolyl, 1,2,4-thiadiazolyl, thieno (2,3-b) furanyl, furopyranyl, benzofuranyl, benzoxepinyl, isooxazolyl, oxazolyl, thianthrenyl, benzothiazolyl, or benzoxazolyl, cinnolinyl, phthalazinyl, quinoxalinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenothiazinyl, furazanyl, isochromanyl, indolinyl, xanthenyl, hypoxanthinyl, pteridinyl, 5-azacytidinyl, 5-azauracilyl, triazolopyridinyl, imidazolopyridinyl, pyrrolopyrimidinyl, and pyrazolopyrimidinyl optionally substituted by alkyl or as described above for the alkyl groups. Non-limiting examples of non aromatic heterocycles are tetrahydrofuranyl, tetrahydropyranyl, piperidinyl, piperidyl, piperazinyl, imidazolidinyl, morpholino, morpholinyl, 1-oxaspiro (4.5) dec-2-yl, pyrrolidinyl, 2-oxo-pyrrolidinyl, sugar moieties (i.e. glucose, pentose, hexose, ribose, fructose, which may also be substituted) or the same which can optionally be substituted with any suitable group, including but not limited to one or more moieties selected from lower alkyl, or other groups as described above for the alkyl groups. The term “heterocycle” also includes bicyclic, tricyclic and tetracyclic, spiro groups in which any of the above heterocyclic rings is fused to one or two rings independently selected from an aryl ring, a cyclohexane ring, a cyclohexene ring, a cyclopentane ring, a cyclopentene ring or another monocyclic heterocyclic ring or where a monocyclic heterocyclic group is bridged by an alkylene group, such as quinuclidinyl, 7-azabicyclo(2.2.1)heptanyl, 7-oxabicyclo(2.2.1) heptanyl, 8-azabicyclo(3.2.1)octanyl.




← Previous       Next → Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Methods and compositions for improving cognitive function patent application.
###
monitor keywords

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Methods and compositions for improving cognitive function or other areas of interest.
###


Previous Patent Application:
Amino acid and its uses
Next Patent Application:
Phenyl substituted maleimides as medicaments for blocking degenerative tissue damages by inhibiting mpt
Industry Class:
Drug, bio-affecting and body treating compositions
Thank you for viewing the Methods and compositions for improving cognitive function patent info.
- - -

Results in 0.04191 seconds


Other interesting Freshpatents.com categories:
Medical: Surgery Surgery(2) Surgery(3) Drug Drug(2) Prosthesis Dentistry  

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.1054

66.232.115.224
Next →
← Previous
     SHARE
     

stats Patent Info
Application #
US 20100099735 A1
Publish Date
04/22/2010
Document #
12580464
File Date
10/16/2009
USPTO Class
514423
Other USPTO Classes
International Class
/
Drawings
4


Your Message Here(14K)


Etiracetam
Memory Impairment
Mild Cognitive Impairment
Seletracetam
Vesicle


Follow us on Twitter
twitter icon@FreshPatents



Drug, Bio-affecting And Body Treating Compositions   Designated Organic Active Ingredient Containing (doai)   Heterocyclic Carbon Compounds Containing A Hetero Ring Having Chalcogen (i.e., O,s,se Or Te) Or Nitrogen As The Only Ring Hetero Atoms Doai   Five-membered Hetero Ring Containing At Least One Nitrogen Ring Atom (e.g., 1,2,3-triazoles, Etc.)   The Five-membered Hetero Ring Consists Of One Nitrogen And Four Carbons   C=x Bonded Directly To The Five-membered Hetero Ring By Nonionic Bonding (x Is Chalcogen)  

Browse patents:
Next →
← Previous