Follow us on Twitter
twitter icon@FreshPatents

Browse patents:

Pyrazolonaphthyridine derivatives

Title: Pyrazolonaphthyridine derivatives.
Abstract: wherein A is phenyl, pyridyl, 1-oxypyridyl, or thienyl, which may be unsubstituted or optionally substituted with one or more members selected from the group consisting of hydroxyl, halogen, cyano, nitro, lower alkyl, lower alkoxy, lower alkylcarbonyloxy, amino, carboxyl, lower alkoxy-carbonyl, carboxy-lower alkylene, lower alkoxycarbonyl-lower alkylene, lower alkylsulfonyl, lower alkylsulfonyl-amino, and ureido; R1 is a group selected from the group consisting of hydrogen, hydroxyl, halogen, cyano, nitro, lower alkoxy, amino, carboxyl, and lower alkoxycarbonyl; R2 is hydrogen or lower alkyl; and m is an integer of 1 to 3; or a pharmaceutically acceptable salt thereof, possesses highly excellent PDE IV-specific inhibitory actions and is useful as an anti-asthmatic drug and/or a prophylactic/therapeutic drug for COPD with high safety. The target is to provide PDE IV inhibitors which have a highly potent anti-asthmatic and/or COPD-prophylactic/therapeutic profile with unexpectedly excellent safety. A compound of the formula (1): ...

USPTO Applicaton #: #20100093782
Inventors: Hashime Kanazawa, Tomoji Aotsuka, Kentarou Kumazawa, Kouki Ishitani, Takashi Nose

The Patent Description & Claims data below is from USPTO Patent Application 20100093782, Pyrazolonaphthyridine derivatives.


- Top of Page

The present invention relates to novel condensed naphthyridine derivatives that inhibit phosphodiesterase (hereinafter, referred to as “PDE”) IV, or pharmaceutically acceptable salts thereof, and to pharmaceutical compositions comprising the same.


- Top of Page


PDEs are enzymes which hydrolyze intracellular cyclic AMP (cAMP) and intracellular cyclic GMP (cGMP) and widely distributed in vivo in various tissues and organs. Up to now, it has been known that PDEs are classified into 7 isoenzyme families, i.e., type I to VII PDEs (PDE I to VII), according to their properties. Among them, PDE IV is known to be an enzyme which is predominantly present in airway smooth muscle cells and a wide variety of inflammatory cells, i.e., neutrophils, eosinophils, lymphocytes, etc. and selectively breaks down cAMP.

In addition, it has been known that an elevation of cAMP levels in airway smooth muscle cells leads to relaxation of the airway smooth muscles. An increase of cAMP levels in inflammatory cells has also been known to suppress an activation of inflammatory cells, including, for example, a release of cytotoxic proteins from eosinophils, etc.

Therefore, if PDE IV predominantly located in airway smooth muscle cells and inflammatory cells is inhibited by inhibitors selective for said isozyme form, an elevation of cAMP levels would be induced in such cells. As a result, it would be expected to elicit bronchodilator actions via relaxing airway smooth muscles and anti-inflammatory actions through suppressing inflammatory cell activation. As seen, for example, in Barnette, PROGRESS IN DRUG RESEARCH, USA, Vol. 53, pp. 193-229 (1999) (non-patent document No. 1), such selective inhibitors of PDE IV would be expected to become excellent anti-asthmatic agents and therapeutic agents for chronic obstructive pulmonary disease (COPD).

Up to now, it has been known that theophylline which is a xanthine derivative, rolipram, which is a catechol derivative, etc., are inhibitors of PDE IV. Theophylline inhibits PDE in various tissues due to its non-selectivity for individual isozymes, thereby exerting not only a bronchodilator activity to be targeted but also extra actions on heart, CNS, etc. Although rolipram is observed to be selective for PDE IV, it is easily transferred into the CNS due to its property of being absorbed. Therefore, rolipram has a drawback that it induces adverse central side-effects such as an emetic action.

Over the past decade, many pharmaceutical companies have focused on the inhibition of PDE IV for the treatment of asthma. The biological studies on the PDE IV isozyme and the structure-activity relationship of said inhibitors have recently been reviewed in the literature. In such processes, it has been pointed out that in general the therapeutic utility of selective PDE IV inhibitors, such as the prototypical agent rolipram, have been hampered by nausea and emesis limiting their therapeutic potential (J. Med. Chem., 41: 2268 to 2277 (1998): non-patent document No. 2).

It recently becomes known that PDE IV inhibitors produce inhibition of drug-metabolizing enzymes such as CYP2D6 and CYP3A4, thereby raising a variety of adverse side-actions. Therefore, there is still a desire to develop a PDE IV inhibitor free of affecting the drug-metabolizing enzymes.

Under these circumstances, in order to find out pharmaceutical drugs having an excellent anti-asthmatic efficacy and/or a prophylactic or therapeutic efficacy on COPD via minimizing undesirable side-effects in tissues and organs other than bronchial smooth muscles and inflammatory cells, various PDE IV inhibitors have been screened and examined.

For instance, with an aim at such inhibitors with improved selectivity for PDE IV, various compounds have been proposed including naphthalene derivatives (e.g., Patent document No. 1: JP, A, 10-226647 (1998)), catechol diethers derivatives (e.g., Patent document No. 2: JP, A, 2001-527508), 2,3-di-substituted pyridine derivatives (e.g., Patent document No. 3: JP, A, 2001-354655), etc. Further, for the purpose of developing not only anti-asthmatic agents but also pharmaceutical agents for preventing and treating a wide range for diseases, PDE IV-inhibitory compounds having a naphthyridine ring have been proposed (for example, Patent document No. 4: JP, A, 7-10875 (1995); Patent document No. 5: WO, A, 96/06843; Patent document No. 6: JP, A, 11-106385 (1999); Patent document No. 7: JP, A, 2002-138089; Patent document No. 8: WO, A, 99/02527; Patent document No. 9; WO, A, 99/38867; Patent document No. 10; WO, A, 01/42244; etc.).

Whereas, in connection with compounds where a heterocyclic ring is condensed to a naphthyridine ring are disclosed compounds having anti-inflammatory, immunoregulatory, analgesic, and antipyretic actions (for example, Patent document No. 11: JP, A, 5-132484 (1993), Patent document No. 12: JP, A, 6-100561 (1994)) and compounds having anti-inflammatory, immunoregulatory, bronchodilator, and hair-growing actions (for example, Patent document No. 13: JP, A, 5-194515 (1993), Patent document No. 14: JP, B2, 3016905); however, no inhibitory action on PDE IV is indicated in these prior art compounds.

[Patent document No. 1] JP, A, 10-226647 (1998)
[Patent document No. 2] JP, A, 2001-527508
[Patent document No. 3] JP, A, 2001-354655
[Patent document No. 4] JP, A, 7-10875 (1995)
[Patent document No. 5] WO, A, 96/06843
[Patent document No. 6] JP, A, 11-106385 (1999)
[Patent document No. 7] JP, A, 2002-138089
[Patent document No. 8] WO, A, 99/02527
[Patent document No. 9] WO, A, 99/38867
[Patent document No. 10] WO, A, 01/42244
[Patent document No. 11] JP, A, 5-132484 (1993)
[Patent document No. 12] JP, A, 6-100561 (1994)
[Patent document No. 13] JP, A, 5-194515 (1993)

← Previous       Next →
Advertise on - Rates & Info

You can also Monitor Keywords and Search for tracking patents relating to this Pyrazolonaphthyridine derivatives patent application.


Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Pyrazolonaphthyridine derivatives or other areas of interest.

Previous Patent Application:
Imidazo [1, 2-a] pyrrolo [3, 2-c] pyridine compounds useful as pestivirus inhibitors
Next Patent Application:
Composition for treatment of common cold
Industry Class:
Drug, bio-affecting and body treating compositions
Thank you for viewing the Pyrazolonaphthyridine derivatives patent info.
- - -

Results in 0.41652 seconds

Other interesting categories:
Novartis , Apple , Philips , Toyota ,


Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. Terms/Support
Browse patents:

stats Patent Info
Application #
US 20100093782 A1
Publish Date
Document #
File Date
Other USPTO Classes
International Class

Follow us on Twitter
twitter icon@FreshPatents

Drug, Bio-affecting And Body Treating Compositions   Designated Organic Active Ingredient Containing (doai)   Heterocyclic Carbon Compounds Containing A Hetero Ring Having Chalcogen (i.e., O,s,se Or Te) Or Nitrogen As The Only Ring Hetero Atoms Doai   Hetero Ring Is Six-membered Consisting Of One Nitrogen And Five Carbon Atoms   Polycyclo Ring System Having The Six-membered Hetero Ring As One Of The Cyclos   Tricyclo Ring System Having The Six-membered Hetero Ring As One Of The Cyclos   Plural Hetero Atoms In The Tricyclo Ring System  

Browse patents:
20100415|20100093782|pyrazolonaphthyridine derivatives|wherein A is phenyl, pyridyl, 1-oxypyridyl, or thienyl, which may be unsubstituted or optionally substituted with one or more members selected from the group consisting of hydroxyl, halogen, cyano, nitro, lower alkyl, lower alkoxy, lower alkylcarbonyloxy, amino, carboxyl, lower alkoxy-carbonyl, carboxy-lower alkylene, lower alkoxycarbonyl-lower alkylene, lower alkylsulfonyl, lower alkylsulfonyl-amino, and |