FreshPatents.com Logo
stats FreshPatents Stats
n/a views for this patent on FreshPatents.com
Updated: January 23 2015
newTOP 200 Companies
filing patents this week



Advertise Here
Promote your product, service and ideas.

    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Expanding chassis for imaging systems


Title: Expanding chassis for imaging systems.
Abstract: An expanding chassis for an imaging unit is provided, the expanding chassis for use in imaging systems having a plurality of imaging units arranged in an array. The expanding chassis comprises a rigid frame for housing a light engine and related circuitry, and for mounting a screen on a front surface of the rigid frame for use with the light engine. The expanding chassis further comprises at least one expandable interface pad on at least one side of the rigid frame. The rigid frame and the expandable interface pad have a combined thermal expansion characteristic that provides an overall expansion in the expanding chassis that substantially matches the expansion of the screen. ...



Browse recent Christie Digital Systems Usa, Inc. patents
USPTO Applicaton #: #20100026973 - Class: 353119 (USPTO) - 02/04/10 - Class 353 
Inventors: Bryan Hemphill, Les Hirst, Dan Adema

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20100026973, Expanding chassis for imaging systems.

FIELD

The present invention relates to a chassis for mounting a configurable imaging system, and more particularly to a thermally expansive chassis for mounting a plurality of imaging units for generating respective portions of a composite image.

BACKGROUND

A large number of applications and potential applications exist for imaging systems such as projection displays that are used to display information. Such applications include, but are not limited to, general indoor signage (e.g. shopping malls, arcades, etc.), transportation signage (e.g. arrival/departure times, etc.), in-lobby signage for office buildings, control rooms, restaurants signage, etc.

It is known to provide large displays for signage and the like by assembling a multiplicity of small displays in an array (see, for example, WO 2006/115852 (Ostendo)). Unfortunately, in such an arrangement, adjacent displays are arranged with significant gaps so as to account for thermal expansion of each unit. Large gaps between adjacent screens have the potential to interfere with the optical transition from one display to the next, reducing overall image quality.

SUMMARY

- Top of Page


According to an aspect of an embodiment, provided is a thermally expansive interface pad that is coupled to a rigid chassis so that the combined pad and chassis thermal expansion will substantially match the screen thermal expansion.

According to a further aspect of an embodiment, provided is an expanding chassis for an imaging unit for use in imaging systems having a plurality of imaging units arranged in an array, the expanding chassis comprising:

a rigid frame for housing a light engine and related circuitry, and for mounting a screen on a front surface of said rigid frame for use with said light engine; and

at least one expandable interface pad on at least one side of said rigid frame;

said rigid frame and said expandable interface pad having a combined thermal expansion characteristic that provides an overall expansion in the expanding chassis that substantially matches the expansion of said screen.

According to a another aspect of an embodiment, in a microtile unit comprising a chassis and a screen, an improvement comprising an expanding chassis for matching the expansion noted in the screen, the expanding chassis comprising

a rigid frame for housing a light engine and related circuitry, and for mounting a screen on a front surface of said rigid frame for use with said light engine; and

at least one expandable interface pad on at least one side of said rigid frame;

said rigid frame having a first thermal expansion characteristic, said interface pad having a second thermal expansion characteristic, the combined thermal expansion characteristics providing an overall expansion in the expanding chassis that substantially matches the expansion of said screen.

BRIEF DESCRIPTION OF THE DRAWINGS

- Top of Page


Embodiments will now be described, by way of example only, with reference to the attached Figures, wherein.

FIG. 1 is a block diagram of an exemplary imaging system comprising a plurality of imaging units;

FIG. 2 is a front perspective view of an exemplary block microtile unit;

FIG. 3a is an exemplary rectangular arrangement of a plurality of microtile units;

FIG. 3b is an exemplary cross-shaped arrangement of a plurality of microtile units;

FIG. 4 is a schematic representation of screen expansion in an imaging system;

FIG. 5a is a schematic top-view representation of a microtile unit with an interface pad situated on each side;

FIG. 5b is a schematic top-view representation of a plurality of microtile units with interface pads;

FIG. 6 is a schematic representation of screen and interface pad expansion, showing expansion from a first state, to a second state;

FIG. 7 shows two microtile units with a single unitary interface pad placed therebetween;

FIG. 8 shows two microtile units two interface pad pairs placed therebetween;

FIG. 9A shows an exemplary fastener used to affix a unit to a supporting structure;

FIG. 9B shows an exemplary extendible fastener used between adjacent units;

FIG. 10 is an alternate arrangement of an interface pad comprising a fluid/gas filled reservoir;

FIG. 11 is an alternate arrangement of an interface pad comprising a thermal actuator;

FIG. 12 shows an exemplary bidirectional interface pad capable of both push/pull functionality;

FIG. 13A shows two fluid/gas filled interface pads arranged in side-by-side configuration with a coupler used to effect both push/pull functionality; and

FIG. 13B shows two thermal actuator interface pads arranged in side-by-side configuration with a coupler used to effect both push/pull functionality.

The skilled person in the art will understand that the drawings are for illustrative purposes only. The drawings are not intended to limit the scope of the applicant's teachings in any way.

DESCRIPTION OF EXEMPLARY EMBODIMENTS

In FIG. 1 an exemplary imaging system 10 is shown comprising a plurality of imaging (e.g. microtile) units assembled to form an array. Exemplary microtile units are described in Applicant's co-pending application entitled CONFIGURABLE IMAGING SYSTEM (U.S. patent application Ser. No. 12/119,191), which is herein incorporated by reference. Each microtile unit 20 generally contains a light engine and associated circuitry (including, for example, a microprocessor, RAM frame buffer, and video processing to provide image capture, resizing, color matching, edge blending, etc).

In FIG. 2, an exemplary microtile unit 20 is shown wherein the microtile unit is in the form of a “block”. The front surface of each microtile unit 20 comprises a self-contained screen 22 mounted on a chassis 24, Positioned within the chassis of each microtile unit is a small rear projector (including light source, light valve, optics and associated electronics) for projecting an image on the screen 22. According to an exemplary embodiment, the light source is implemented using LEDs, although it is contemplated that lasers or other light sources may be utilized, the selection and implementation of which would be known to a person of ordinary skill in the art.

Each unit projects a portion of a composite image (preferably at SVGA resolution to enable small pixel pitch (under 1 mm)), as shown in FIG. 3a. It will be noted that microtile units 20 are not required to be arranged in rectangular configurations, thereby resulting in significant flexibility in terms of display design. Note the arrangement shown in FIG. 3b in which the display takes the form of a cross comprising 6 microtile units 20.

Regardless of the arrangement, coupling mechanisms permit physical registration or alignment of the microtile unit with other microtile units based on the shapes of protrusions on respective side surfaces of each microtile unit chassis. Exemplary protrusions 26 on the top of the microtile chassis 24 are shown in FIG. 2. It has been determined, however, that in constructions where the screen materials (generally comprising the screen, lenticular, diffusion layers, Fresnel, etc.) exhibit thermal expansion characteristics that differ (e.g. exceed) from that of the chassis, an expansion differential can result. Changes in temperature can arise from a number of sources, including, but not limited to operation of the imaging unit, and changes in the ambient temperature in which the imaging unit is located. FIG. 4 is a schematic representation of exemplary screen expansion in an imaging system 10 from a first state 28 at room temperature, to a second state 30 at elevated temperature. As a result, the overall composite screen area expands to a greater extent than the underlying plurality of chassis units, herein referred to as the chassis platform. To account for this expansion, a nominal gap 32 between adjacent screens 22 is required to avoid potentially damaging screen compression or collision. While the gap 32 is generally sized large enough to permit for thermal changes in screen size, it will be appreciated that a large gap between adjacent screens will interfere with the optical transition from one microtile to the next, reducing overall image quality.

To minimize the gap size, it is desirable to have the chassis 24 exhibit similar thermal expansion characteristics to that of the screen 22, thereby reducing the expansion differential. In this way, once an imaging system is arranged, the overall expansion noted in the screens is substantially matched by that of the underlying chassis platform. To achieve this, one option is to provide a chassis of plastic or similar construction having a comparable coefficient of thermal expansion (CTE) to the screen assembly. As the screen expands, so too does the chassis, thereby maintaining the expansion differential to a minimum. Unfortunately, a plastic chassis has potentially poor performance with respect to dimensional stability, particularly as it relates to component positioning. A plastic chassis may twist and distort as it expands and contracts, resulting in misalignment of the optical components.

For greater dimensional stability, the chassis 24 of each microtile unit 20 is configured to generally comprise a rigid frame 34, and at least one expandable interface pad 36, as shown schematically in FIGS. 5a and 5b. The rigid frame 34 is made from a material with a CTE lower than the screen CTE, and which has the dimensional stability to maintain mating components in proper alignment. The rigid frame, 34 may also be configured to permit mounting of the microtile unit 20 to a supporting structure, such as a wall. Non-limiting examples of suitable materials for the chassis include aluminum, magnesium, and glass-filled nylon.

The interface pad 36 is generally a unitary block of material demonstrating a higher CTE than the screen CTE. While the interface pad may be a separate feature on the microtile unit to allow for chassis expansion, the interface pad may also be configured similar to and as a replacement of the aforementioned coupling mechanism to permit registration or alignment of the microtile unit with other microtile units. Whatever the arrangement, the chassis 24 and pad 36 dimensions will be set appropriately so that the combined thermal expansions of the rigid frame 34 and the pad 36 will substantially match the thermal expansion of the screen 22. As such, in an imaging system comprising a plurality of microtile units, the overall expansion noted in the screens is substantially matched by that of the chassis platform.

As the operating temperature increase, both the screen 22 and interface pads 36 expand. In the example shown in FIG. 6, the screen expands from a first state 28 to a second state 30, while the pad similarly expands from a first state 28a to a second state 30a. As such, the pads 36 effectively urge adjacently positioned microtile units away from one another, thereby maintaining the gap to reduce the likelihood of damaging screen compression or collision. A non-limiting example of a suitable material for the interface pad 36 includes Quadrant's Tivar 1000 UHMW PE having a GTE of 3.6 mm/m-10C. Other exemplary materials include, but are not limited to DuPont Teflon, DuPont Hytrel, Kolon SPELLOY PC+ABS, and Kolon NOPLA PEN-PET.

While the present embodiment is illustrated using two adjacently positioned pads, dimensioned for example to be registered relative to one another, in some embodiments, one pad 36 can be used, as shown in FIG. 7. In this configuration, one pad is located between two adjacent microtile units 20 so as to provide the necessary expansion. It is also possible that a plurality of pads may be spaced along any one side of a microtile unit, as shown in FIG. 8 in which two pad pairs are used.

Table 1 provides an exemplary set of thermal expansion characteristics of a rigid chassis compared to a screen.

TABLE 1 Thermal Expansion of Chassis and Screen (no interface pad) CTE Nominal (mm/m- Width increase Width at Component Width (mm) 10 C.) over 40 C. (mm) Temp (mm)

Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Expanding chassis for imaging systems patent application.
###
monitor keywords

Browse recent Christie Digital Systems Usa, Inc. patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Expanding chassis for imaging systems or other areas of interest.
###


Previous Patent Application:
Projector and control method of projector
Next Patent Application:
Cooling of actuator coils
Industry Class:
Optics: image projectors
Thank you for viewing the Expanding chassis for imaging systems patent info.
- - -

Results in 0.01845 seconds


Other interesting Freshpatents.com categories:
Electronics: Semiconductor Audio Illumination Connectors Crypto

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.1076

66.232.115.224
Next →
← Previous
     SHARE
  
     

stats Patent Info
Application #
US 20100026973 A1
Publish Date
02/04/2010
Document #
12183653
File Date
07/31/2008
USPTO Class
353119
Other USPTO Classes
International Class
03B21/14
Drawings
11


Your Message Here(14K)



Follow us on Twitter
twitter icon@FreshPatents

Christie Digital Systems Usa, Inc.

Browse recent Christie Digital Systems Usa, Inc. patents