FreshPatents.com Logo
stats FreshPatents Stats
6 views for this patent on FreshPatents.com
2011: 1 views
2010: 5 views
Updated: June 10 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Sulphonylated diphenylethylenediamines, method for their preparation and use in transfer hydrogenation catalysis

last patentdownload pdfimage previewnext patent


Title: Sulphonylated diphenylethylenediamines, method for their preparation and use in transfer hydrogenation catalysis.
Abstract: A diamine of formula (I) is described in which A is hydrogen or a saturated or unsaturated C1-C20 alkyl group or an aryl group; B is a substituted or unsubstituted C1-C20 alkyl, cycloalkyl, alkaryl, alkaryl or aryl group or an alkylamino group and at least one of X1, X2, Y1, Y2 or Z is a C1-C10 alkyl, cycloalkyl, alkaryl, aralkyl or alkoxy substituting group. The chiral diamine may be used to prepare catalysts suitable for use in transfer hydrogenation reactions. ...


USPTO Applicaton #: #20090326274 - Class: 568309 (USPTO) - 12/31/09 - Class 568 
Organic Compounds -- Part Of The Class 532-570 Series > Azo Compounds Containing Formaldehyde Reaction Product As The Coupling Component >Amino Nitrogen Containing (e.g., Urea, Sulfonamides, Nitrosamines, Oxyamines, Etc., And Salts Thereof) >Ketones >Benzene Ring Containing >Processes

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20090326274, Sulphonylated diphenylethylenediamines, method for their preparation and use in transfer hydrogenation catalysis.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

This is a continuation application claiming priority to U.S. patent application Ser. No. 11/719,478, filed Jul. 17, 2007, now published as U.S. Patent Publication 2008/0081930 A1, and entitled “Sulphonylated Diphenylethylenediamines, Method for their Preparation and Use in Transfer Hydrogenation Catalysis.” The parent application, U.S. patent application Ser. No. 11/719,478, is a filing under 35 U.S.C. 371 of International Application No. PCT/GB2005/050190 filed Nov. 1, 2005, entitled “Sulphonylated Diphenylethylenediamines, Method for their Preparation and Use in Transfer Hydrogenation Catalysis,” claiming priority of United Kingdom Patent Application No. 0425320.9 filed Nov. 17, 2004. The above identified applications are incorporated by reference herein in their entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable.

REFERENCE TO A MICROFICHE APPENDIX

Not Applicable.

BACKGROUND

This invention relates to diamines and in particular to substituted diphenylethylenediamines and catalysts derived therefrom. Such catalysts are useful for accelerating asymmetric hydrogenation reactions whose products are useful, for example, as chemical intermediates or reagents for use in the production of fine chemicals or pharmaceutical intermediates.

Catalytic asymmetric hydrogenation involves the activation of molecular hydrogen with chiral metal complexes. However, organic molecules can also be applied as the hydrogen donor in the presence of a suitable chiral catalyst in a process known as transfer hydrogenation. A hydrogen donor such as isopropanol or formic acid is conventionally used with catalysts of the type [(sulphonylated diamine)RuCI(arene)] for the reduction of carbonyl groups. This technology provides a powerful complement to catalytic asymmetric hydrogenation. Transfer hydrogenation, in fact, is particularly suitable for the asymmetric reduction of ketones that are difficult substrates for hydrogenation, such as acetylenic ketones and cyclic ketones.

Heretofore the sulphonylated diamine component of the transfer hydrogenation catalysts has been limited to sulphonylated diphenylethylenediamine (Dpen) and cycloalkyl-1,2-diamines such as 1,2-cyclohexane. For example transfer hydrogenation has been applied using [(tosyl-dpen)RuCI(arene)] catalysts to pharmaceutical products such as 10-hydroxy-dihydro-dibenz-[b,f]-azepines (see WO 2004/031155).

The sulphonylated diamine components used heretofore, while useful, are not equally effective across the range of desirable substrates. Thus, there is a need to expand the range of diamines suitable for use in transfer hydrogenation catalysts that provide catalysts of increased activity, selectivity or stability. We have recognised that, by introducing one or more substituting groups into the phenyl rings of diphenylethylenediamines and by variation of the sulphonate properties, the steric and electronic properties of the diamine component may be usefully adapted.

SUMMARY

Accordingly the present invention provides a diamine of formula (I)

in which A is hydrogen or a saturated or unsaturated C1-C20 alkyl group or an aryl group; B is a substituted or unsubstituted C1-C20 alkyl, cycloalkyl, alkaryl, alkaryl or aryl group or an alkylamino group and at least one of X1, X2, Y1, Y2 or Z is a C1-C10 alkyl, cycloalkyl, alkaryl, aralkyl or alkoxy substituting group.

The invention further provides a method for preparing a diamine of formula (I) comprising the steps of forming a substituted spiroimidazole from a substituted diketone of formula (II), where X1, X2, Y1, Y2 and Z are as above, reducing the substituted spiroimidazole to form a substituted diamine, optionally resolving the substituted diamine to an enantiomerically enriched form, and sulphonylating the substituted diamine.

The invention also provides a catalyst comprising the reaction product of a diamine of formula (I) and a suitable compound of a catalytically active metal.

DETAILED DESCRIPTION

In formula (I), A is hydrogen or a saturated or unsaturated C1-C20 alkyl group or an aryl group. The C1-C20 alkyl groups may be branched or linear, for example may be methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, pentyl, hexyl, cyclohexyl, ethyl-hexyl, iso-octyl, n-nonyl, n-decyl, iso-decyl, tridecyl, octadecyl and isooctadecyl. The aryl group may be an unsubstituted or substituted phenyl, naphthyl or anthracylphenyl. Suitable substituting groups are hydroxy, halide (e.g. F, Cl, Br, I), C1-C20 alkoxy, amino, amido, nitrile and thiol. Preferably A is hydrogen, methyl ethyl, propyl or phenyl. Most preferably A is hydrogen.

In formula (I), B is introduced by sulphonylation of the optionally enantiomerically enriched substituted diamine. A wide range of sulphonylation compounds may be used to alter the properties of the sulphonylated diamine of formula (I). Accordingly, B may be a substituted or unsubstituted C1-C20 alkyl, cycloalkyl, alkaryl, alkaryl or aryl group, for example as described above, or an alkylamino group. By “alkylamino” we mean that B may be of formula —NR′12, where R′ is e.g. methyl, cyclohexyl or isopropyl or the nitrogen forms part of an alkyl ring structure. Fluoroalkyl or fluoroaryl groups may be used, for example B may be p-CF3—C6H4, C6F5 or CF2CF2CF2CF3 or CF3. Preferably B is an aryl group. The aryl group may be an unsubstituted or substituted phenyl, naphthyl or anthracylphenyl or heteroaryl compound such as pyridyl. Suitable substituting groups are C1-C20 alkyl as described above, trifluoromethyl, hydroxyl, halide (e.g. F, Cl, Br, I), C1-C20 alkoxy (especially methoxy), amino, amido, nitrile, nitro and thiol. Hence B may be for example o-Nitrophenyl, p-nitrophenyl, trichlorophenyl, trimethoxyphenyl, triisopropylphenyl, o-aminophenyl, benzyl (—CH2C6H5), 2-phenylethyl(C2H4C6H5), phenyl(C6H5), tolyl(p-CH3—C6H4), xylyl((CH3)2C6H3), anisyl(CH3O—C6H4), naphthyl or dansyl (5-dimethylamino-1-naphthyl). Preferably, B is tolyl and the sulphonylation is performed with tosyl chloride (p-toluenesulphonyl chloride).

The diamine of the present invention has two chiral centres, each bearing a phenyl ring having at least one substituting group X1, X2, Y1, Y2 or Z. The substituting group X1, X2, Y1, Y2 or Z is a C1-C10 alkyl, cycloalkyl, alkaryl, aralkyl or alkoxy group. It will be understood that in order to satisfy the valency of the carbon atoms in the phenyl rings to which X1, X2, Y1, Y2 or Z is bound, where X1, X2, Y1, Y2 or Z is not a C1-C10 alkyl, cycloalkyl, alkaryl, aralkyl or alkoxy substituting group, X1, X2, Y1, Y2 or Z will be a hydrogen atom.

Thus at least one of X1, X2, Y1, Y2 or Z may independently be a C1-C10 alkyl group such as methyl, trifluoromethyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, pentyl, cyclopentyl, hexyl, cyclohexyl, ethyl-hexyl, iso-octyl, n-nonyl, n-decyl or iso-decyl; an alkaryl group such as benzyl or ethylphenyl; an aryl group such as phenyl, tolyl or xylyl; or a C1-C10 alkoxy group such as methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, cyclopentoxy, pentoxy, hexoxy, cyclohexoxy, ethyl-hexoxy, iso-octoxy, n-nonoxy, n-decoxy or iso-decoxy.

Preferably each phenyl ring has one or more substituents. The phenyl rings may be substituted in one or more positions, i.e. the rings may be mono-, di-, tri-, tetra- or penta-substituted. The substituting group on the phenyl ring may be in the ortho (X1, X2), meta (Y1, Y2) or para (Z) position. However, when the substituent is at the mete-position of the phenyl ring it minimizes the electronic effects on the amino group, which may facilitate the synthesis of the resulting diamine. Thus one embodiment the substituted diamine is a 1,2-di-(meta-substituted phenyl)ethylenediamine. Where more that one substituting group is present they are preferably the same. For example in one embodiment, Y1, Y2 may be hydrogen and X1, X2 and Z are preferably the same alkyl, cycloalkyl, alkaryl, aralkyl or alkoxy substituting group. In an alternative embodiment X1, X2 and Z may be hydrogen and Y1 and Y2 are preferably the same alkyl, cycloalkyl, alkaryl, aralkyl or alkoxy substituting group. In a preferred embodiment X1, X2, Y1 and Y2 are hydrogen and Z is a C1-C10 alkyl, cycloalkyl, alkaryl, aralkyl or alkoxy substituting group. In a particularly preferred embodiment, X1, X2, Y1 and Y2 are hydrogen and Z is methyl. In another particularly preferred embodiment, X1, X2, Y1 and Y2 are hydrogen and Z is methoxy.

The substituted diamines of the present invention may be conveniently made from substituted diketones of formula (II) where X1, X2, Y1, Y2 and Z are as above, via a spiro-imidazole, which is then reduced to a diamine and sulphonylated.

Substituted diketones (benzils) of formula (II) can be obtained commercially or can be readily prepared from substituted benzaldehydes of formula (III) where X1, X2, Y1, Y2 and Z are as above, by benzoin condensation followed by oxidation of the resulting substituted benzoin. Substituted benzaldehydes are commercially available or may be synthesised using known substitution reactions. Benzoin condensation reactions are well known and are typically performed by reacting a substituted benzaldehyde in a suitable solvent in the presence of sodium cyanide (see for example Ide et al, Org. React. 1948, 4, 269-304). The oxidation of the substituted benzoin to the diketone may readily be performed using copper acetate and ammonium nitrate (for example see Weiss et al, J. Am. Chem. Soc, 1948, 3666).

The spiroimidazole may be formed by treating the substituted diketone of formula (II) with acetic acid, ammonium acetate and cyclohexanone and heating to reflux. The reduction of the resulting substituted benzoin to the substituted diamine may be performed by mixing a solution of the spiroimidazole with lithium wire and liquid ammonia at below −60° C., treating the mixture with ethanol and ammonium chloride and allowing the mixture to warm to room temperature. The substituted diamine is sulphonylated to provide the substituted diamines of the present invention.

The substituted diamine may then be sulphonylated by treating the substituted diamine in a suitable solvent with the desired sulphonyl chloride, i.e. Cl—SO2—B, and a base such as triethylamine.

The nitrogen atoms in the substituted diamine are bonded to chiral centres and so the substituted diamine is chiral. The diamine may be homochiral, i.e. (R,R) or (S,S), or have one (R) and one (S) centre. Preferably the diamine is homochiral. Whereas the diamine may be used as a racemic mixture, the amine is preferably enantiomerically enriched. The resolution of the chiral substituted diamine may be performed using a chiral acid or by any other method known to those skilled in the art. Whereas the resolution may be performed on the sulphonylated diamine of formula (I), preferably the resolution is performed on the substituted diamine before the sulphonylation step. For example, the substituted diamine may be treated with a chiral carboxylic acid such as ditoluoyltartaric acid or dibenzoyltartaric acid in a suitable solvent. The resolved substituted diamine preferably has an enantiomeric excess (ee %)>70%, more preferably >90%.

Hence this route provides an efficient and cost effective method to prepare enantiomerically enriched substituted 1,2-diphenylethylenediamines. The route is depicted below for a preferred example where A, X1, X2, Y1 and Y2 are hydrogen, B is e.g. p-CH3—C6H5 and Z is a C1-C10 alkyl, cycloalkyl, alkaryl, aralkyl or alkoxy substituting group;

Catalysts suitable for performing asymmetric transfer hydrogenation reactions may be prepared by reacting the substituted sulphonylated diamines of the present invention with a suitable compound of a catalytically active metal. The metal compound is preferably a compound of metals selected from the list consisting of Ru, Rh, Ir, Co, Ni, Fe, Pd or Pt. Preferred compounds are compounds of Ru, Rh and Ir, particularly Ru or Rh. Suitable Ru or Rh compounds are [MX2(arene)]2 compounds where M=Rh or Ru and X=halogen, more preferably [RuCl2(arene)]2. Arene compounds are any suitable aromatic molecule, and include benzenes and cyclopentadienes, e.g. benzene, pentamethylcylcopentadiene and para-cymene (4-isopropyltoluene). Particularly suitable metal compounds for preparing hydrogenation catalysts include [RhCp*Cl2]2 (where Cp* is CpMe5), [RuCl2(benzene)]2 and [RuCl2(p-cymene)]2.

The catalysts may be prepared by simply combining the diamine and the metal compound in a suitable solvent under mild conditions (e.g. 0 to 80° C. at about atmospheric pressure). Suitable solvents include hydrocarbons, aromatic hydrocarbons, chlorinated hydrocarbons, esters, alcohols, ethers, DMF and the like. If desired, the reaction may be performed ex-situ and the resulting catalyst isolated, e.g. by removal of the solvent under vacuum. Alternatively, the catalyst may be formed in-situ, i.e. in the presence of the substrate to be hydrogenated and the hydrogen source, again by combining the metal compound and diamine in the reactants, which may be diluted with a suitable solvent.

The chiral catalysts of the present invention may be applied to transfer hydrogenation reactions. Typically, a carbonyl compound or imine, hydrogen source, base and solvent are mixed in the presence of the catalyst, which may be formed in-situ. Preferred hydrogen sources are isopropanol or formic acid (or formates). The catalysts may be used to reduce a wide variety of carbonyl compounds to the corresponding chiral alcohols and imines to the corresponding chiral amines. The reactions may be carried out under typical transfer hydrogenation conditions and in a variety of suitable solvents known to those skilled in the art. For example, the reaction may be performed in an ether, ester or dimethylformamide (DMF) at 0-75° C. Water may be present. With formic acid, a base such as triethylamine, DBU or other tertiary amine is preferably used. With isopropanol, the base is preferably t-BuOK, KOH or iPrOK.

The invention is illustrated by the following examples.

Example 1 Preparation of Diamine Ligands

(I) Spiro-Imidazole Formation (1 to 2)



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Sulphonylated diphenylethylenediamines, method for their preparation and use in transfer hydrogenation catalysis patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Sulphonylated diphenylethylenediamines, method for their preparation and use in transfer hydrogenation catalysis or other areas of interest.
###


Previous Patent Application:
Ionic bronsted acid
Next Patent Application:
Use of nitrogen-containing curcumin analogs for the treatment of alzheimers disease
Industry Class:
Organic compounds -- part of the class 532-570 series
Thank you for viewing the Sulphonylated diphenylethylenediamines, method for their preparation and use in transfer hydrogenation catalysis patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.56744 seconds


Other interesting Freshpatents.com categories:
Electronics: Semiconductor Audio Illumination Connectors Crypto

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.2716
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20090326274 A1
Publish Date
12/31/2009
Document #
12493043
File Date
06/26/2009
USPTO Class
568309
Other USPTO Classes
564372, 502167
International Class
/
Drawings
0


Alkyl Group
Amine
Amino Group
Catalysis
Catalyst
Diphen
Ethyl
Ethylene
Hydrogen
Hydrogenation
Reaction
Unsaturated


Follow us on Twitter
twitter icon@FreshPatents