FreshPatents.com Logo
stats FreshPatents Stats
8 views for this patent on FreshPatents.com
2013: 1 views
2012: 1 views
2011: 2 views
2010: 4 views
Updated: June 10 2014
newTOP 200 Companies filing patents this week


Advertise Here
Promote your product, service and ideas.

    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Your Message Here

Follow us on Twitter
twitter icon@FreshPatents

Carbon nanotube composition, composite having a coated film composed of the same, and their production methods

last patentdownload pdfimage previewnext patent

Title: Carbon nanotube composition, composite having a coated film composed of the same, and their production methods.
Abstract: The object of the present invention is to provide a carbon nanotube composition that does not impair the characteristics of the carbon nanotubes itself, allows the carbon nanotubes to be dispersed or solubilized in a solvent, does not cause separation or aggregation of the carbon nanotubes even during long-term storage, has superior electrical conductivity, film formability and moldability, can be easily coated or covered onto a base material, and the resulting coated film has superior moisture resistance, weather resistance and hardness; a composite having a coated film composed thereof; and, their production methods. In order to achieve this object, the present invention provides a carbon nanotube composition that contains a conducting polymer (a) or heterocyclic compound trimer (i), a solvent (b) and carbon nanotubes (c), and may additionally contain a high molecular weight compound (d), a basic compound (e), a surfactant (f), a silane coupling agent (g) and colloidal silica (h) as necessary; a composite having a coated film composed of the composition; and, their production methods. ...

Browse recent Mitsubishi Rayon Co., Ltd. patents
USPTO Applicaton #: #20090321688 - Class: 252511 (USPTO) - 12/31/09 - Class 252 
Compositions > Electrically Conductive Or Emissive Compositions >Elemental Carbon Containing >With Organic Component >Resin, Rubber, Or Derivative Thereof Containing



view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20090321688, Carbon nanotube composition, composite having a coated film composed of the same, and their production methods.

last patentpdficondownload pdfimage previewnext patent

TECHNICAL FIELD

The present invention relates to a carbon nanotube composition, a composite having a coated film composed of the same, and their production methods.

BACKGROUND ART

Ever since carbon nanotubes were first discovered by Iijima, et al. in 1991 (S. Iijima, Nature, 354, 56 (1991)), their physical properties have been evaluated and their functions have been elucidated, and extensive research and development have been conducted on their application. However, since carbon nanotubes are produced in an entangled state, they have the shortcoming of being extremely bothersome to handle. In the case of mixing into resins and solutions, there is also the problem of the carbon nanotubes becoming increasingly aggregated, thereby preventing them from demonstrating their inherent characteristics.

Consequently, attempts have been made to uniformly disperse or solubilize carbon nanotubes in solvents or resins by subjecting them to physical treatment or chemical modification.

For example, a method has been proposed in which single-walled carbon nanotubes are cut into short pieces and dispersed by subjecting to ultrasonic treatment in strong acid (R. E. Smalley, et al., Science, 280, 1253 (1998)). However, since treatment is carried out in strong acid, the procedure is complex and not suitable for industrial applications, while the dispersion effects cannot be said to be adequate.

Therefore, by noticing that both ends of single-walled carbon nanotubes cut in the manner proposed above are open, and that they are terminated with oxygen-containing functional groups such as carboxylic acid groups, it was proposed that carbon nanotubes be made soluble in solvent by introducing long-chain alkyl groups by reacting with an amine compound after having converted the carboxylic acid groups into acid chloride (J. Chen, et al., Science, 282, 95 (1998)). However, in this method, since long-chain alkyl groups are introduced into single-walled carbon nanotubes by covalent bonding, there was still the problem of damage to the graphene sheet structure of the carbon nanotubes and effects on the characteristics of the carbon nanotubes itself.

Another attempt to produce water soluble single-walled carbon nanotubes was reported that comprising introducing substituents containing ammonium ions in pyrene molecules by utilizing the fact that pyrene molecules are adsorbed onto the surfaces of carbon nanotubes by strong interaction, and subjecting these to ultrasonic treatment in water together with single-walled carbon nanotubes to non-covalently adsorb them to the single-walled carbon nanotubes (Nakajima, et al., Chem. Lett., 638 (2002)). According to this method, although damage to the graphene sheet structure is inhibited due to the non-covalent bonding chemical modification, since non-conducting pyrene compounds are present, there is the problem of a decrease in the conductivity of the resulting carbon nanotubes.

DISCLOSURE OF THE INVENTION

The object of the present invention is to provide a carbon nanotube composition that does not impair the characteristics of the carbon nanotubes itself, allows the carbon nanotubes to be dispersed or solubilized in water, organic solvents, water-containing organic solvents and other solvents, does not cause separation or aggregation of the carbon nanotubes even during long-term storage, has superior electrical conductivity, film formability and moldability, can be easily coated or covered onto a base material, and the resulting coated film has superior moisture resistance, weather resistance and hardness. The object of the present invention is also to provide a composite having a coated film comprising the carbon nanotube composition as well as production methods of the carbon nanotube composition and the coated film.

As a result of extensive research to solve these problems, the inventor of the present invention found that carbon nanotubes can be dispersed or solubilized in solvent by placing in the presence of a conducting polymer, thereby leading to completion of the present invention.

Namely, a first aspect of the present invention is a carbon nanotube composition that contains a conducting polymer (a), a solvent (b) and carbon nanotubes (c).

In the carbon nanotube composition of this first aspect of the present invention, since the carbon nanotubes (c) are added to the solvent (b) together with the conducting polymer (a), the carbon nanotubes (c) can be dispersed or solubilized in the solvent (b) without impairing the characteristics of the carbon nanotubes (c) itself, and there is no separation or aggregation even during long-term storage. Although the reason for this is not fully understood, the carbon nanotubes (c) are presumed to be dispersed or solubilized together with the conducting polymer (a) due to mutual adsorption by the conducting polymer (a) and the carbon nanotubes (c) due to the π-π interaction by π electrons.

In addition, in the carbon nanotube composition of the present invention, since the conducting polymer (a) and the carbon nanotubes (c) are used in combination, the resulting composition has superior electrical conductivity, film formability and moldability.

The performance of the carbon nanotube composition can be improved by additionally containing a high molecular weight compound (d), a basic compound (e), a surfactant (f) and a silane coupling agent (g) and/or a colloidal silica (h).

In addition, the conducting polymer (a) is preferably a water soluble conducting polymer, and more preferably a water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group.

Moreover, as a result of extensive research to solve the aforementioned problems, the inventor of the present invention found that a composition containing a heterocyclic compound trimer and carbon nanotubes is suitable for this purpose, thereby leading to the present invention.

Namely, a second aspect of the present invention is a carbon nanotube composition that contains a heterocyclic compound trimer (i), a solvent (b) and carbon nanotubes (c). Similar to the carbon nanotube composition of the first aspect of the present invention, performance of the composition can be improved by additionally containing a high molecular weight compound (d), a basic compound (e), a surfactant (f), a silane coupling agent (g) and/or a colloidal silica (h).

The carbon nanotube compositions of the first and second aspects of the present invention enable the carbon nanotubes to be dispersed or solubilized in water, an organic solvent and a water-containing organic solvent without impairing the characteristics of the carbon nanotubes itself, and there is no separation or aggregation even during long-term storage. In addition, according to the carbon nanotube composition of the present invention, a coated film having superior electrical conductivity and film formability can be obtained free of temperature dependence by coating the composition onto a base material and allowing the coated film to demonstrate the characteristics of a conducting polymer, a heterocyclic compound trimer having a sulfonic acid group and a carboxyl group or carbon nanotubes itself. Moreover, the resulting coated film has superior moisture resistance, weather resistance and hardness.

A third aspect of the present invention is a production method of a carbon nanotube composition comprising mixing a conducting polymer (a) or a heterocyclic compound trimer (i), a solvent (b) and carbon nanotubes (c), and irradiating with ultrasonic waves. The carbon nanotubes can be efficiently dispersed or solubilized in the solvent by this ultrasonic treatment.

A fourth aspect of the present invention is a composite having a coated film composed of a carbon nanotube composition of the present invention on at least one surface of a base material.

In addition, a fifth aspect of the present invention is a production method of a composite comprising coating a carbon nanotube composition of the present invention onto at least one surface of a base material, and forming a coated film by allowing to stand at an ordinary temperature or subjecting to heating treatment.

BEST MODE FOR CARRYING OUT THE INVENTION

The following provides a detailed explanation of the present invention.

<Conducting Polymer (a)>

Conducting polymer (a) is a π-conjugated polymer containing as its repeating unit phenylene vinylene, vinylene, thienylene, pyrollylene, phenylene, iminophenylene, isothianaphthene, furylene or carbazolylene and so forth.

With respect to solubility in solvent in particular, a so-called water soluble conducting polymer is used preferably in the present invention. Here, a water soluble conducting polymer refers to a conducting polymer that has acidic groups, alkyl groups substituted with acidic groups or alkyl groups containing ether bonds on the backbone of a π-conjugated polymer or on nitrogen atoms of the polymer.

In addition, among these water soluble conducting polymers, a water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is used preferably in the present invention with respect to solubility in solvent, electrical conductivity and film formability.

Water soluble conducting polymers, disclosed in, for example, Japanese Unexamined Patent Application, First Publication No. S61-197633, Japanese Unexamined Patent Application, First Publication No. S63-39916, Japanese Unexamined Patent Application, First Publication No. H01-301714, Japanese Unexamined Patent Application, First Publication No. H05-504153, Japanese Unexamined Patent Application, First Publication No. H05-503953, Japanese Unexamined Patent Application, First Publication No. H04-32848, Japanese Unexamined Patent Application, First Publication No. H04-328181, Japanese Unexamined Patent Application, First Publication No. H06-145386, Japanese Unexamined Patent Application, First Publication No. H06-56987, Japanese Unexamined Patent Application, First Publication No. H05-226238, Japanese Unexamined Patent Application, First Publication No. H05-178989, Japanese Unexamined Patent Application, First Publication No. H06-293828, Japanese Unexamined Patent Application, First Publication No. H07-118524, Japanese Unexamined Patent Application, First Publication No. H06-32845, Japanese Unexamined Patent Application, First Publication No. H06-87949, Japanese Unexamined Patent Application, First Publication No. H06-256516, Japanese Unexamined Patent Application, First Publication No. H07-41756, Japanese Unexamined Patent Application, First Publication No. H07-48436, Japanese Unexamined Patent Application, First Publication No. H04-268331, Japanese Unexamined Patent Application, First Publication No. H09-59376, Japanese Unexamined Patent Application, First Publication No. 2000-172384, Japanese Unexamined Patent Application, Japanese Unexamined Patent Application, First Publication No. H06-49183 and Japanese Unexamined Patent Application, First Publication No. H10-60108, are preferably used as a water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group.

Specific examples of a water soluble conducting polymers having at least one of a sulfonic acid group and a carboxyl group include water soluble conducting polymers having at least one of a sulfonic acid group and a carboxyl group, an alkyl group substituted with at least one of a sulfonic acid group and a carboxyl group, or an alkyl group containing an ether bond, on the backbone of a π-conjugated polymer or nitrogen atoms of the polymer that contains as its repeating unit at least one type selected from the group consisting of non-substituted or substituted phenylene vinylene, vinylene, thienylene, pyrollylene, phenylene, iminophenylene, isothianaphthene, furylene and carbazolylene. In particular, among these, a water soluble conducting polymer having a backbone that contains thienylene, pyrollylene, iminophenylene, phenylene vinylene, carbazolylene or isothianaphthene is used preferably.

Preferable water soluble conducting polymers having at least one of a sulfonic acid group and a carboxyl group are the water soluble conducting polymers that contain 20 to 100% of at least one type of the repeating units selected from the following formulas (2) to (10) relative to the total number of repeating units throughout the entire polymer:

(in the structural formula (2), wherein R1 and R2 are respectively and independently selected from the group consisting of H, —SO3−, —SO3H, —R35SO3−, —R35SO3H, —OCH3, —CH3, —C2H5, —F, —Cl, —Br, —I, —N(R35)2, —NHCOR35, —OH, —O−, —SR35, —OR35, —OCOR35, —NO2, —COOH, —R35COOH, —COOR35, —COR35, —CHO, and —CN, where R35 represents an alkyl, aryl, or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene, or aralkylene group having 1 to 24 carbon atoms, and at least one of R1 and R2 is a group selected from the group consisting of —SO3−, —SO3H, —R35SO3−, —R35SO3H, —COOH and —R35COOH);

(in the structural formula (3), wherein R3 and R4 are respectively and independently selected from the group consisting of H, —SO3−, —SO3H, —R35SO3−, —R35SO3H, —OCH3, —CH3, —C2H5, —F, —Cl, —Br, —I, —N(R35)2, —NHCOR35, —OH, —O−, —SR35, —OR35, —OCOR35, —NO2, —COOH, —R35COOH, —COOR35, —COR35, —CHO, and —CN, where R35 represents an alkyl, aryl, or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene, or aralkylene group having 1 to 24 carbon atoms, and at least one of R3 and R4 is a group selected from the group consisting of —SO3−, —SO3H, —R35SO3−, —R35SO3H, —COOH and —R35COOH);

(in the structural formula (4), wherein R5 to R8 are respectively and independently selected from the group consisting of H, —SO3−, —SO3H, —R35SO3−, —R35SO3H, —OCH3, —CH3, —C2H5, —F, —Cl, —Br, —I, —N(R35)2, —NHCOR35, —OH, —O−, —SR35, —OR35, —OCOR35, —NO2, —COOH, —R35COOH, —COOR35, —COR35, —CHO and —CN, where R35 represents an alkyl, aryl, or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene, or aralkylene group having 1 to 24 carbon atoms, and at least one of R5 to R8 is a group selected from the group consisting of —SO3−, —SO3H, —R35SO3−, —R35SO3H, —COOH and —R35COOH);

(in the structural formula (5), wherein R9 to R13 are respectively and independently selected from the group consisting of H, —SO3−, —SO3H, —R35SO3−, —R35SO3H, —OCH3, —CH3, —C2H5, —F, —Cl, —Br, —I, —N(R35)2, —NHCOR35, —OH, —O−, —SR35, —OR35, —OCOR35, —NO2, —COOH, —R35COOH, —COOR35, —COR35, —CHO, and —CN, where R35 represents an alkyl, aryl, or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R9 to R13 is a group selected from the group consisting of —SO3−, —SO3H, —R35SO3−, —R35SO3H, —COOH and —R35COOH);

(in the structural formula (6), wherein R14 is selected from the group consisting of —SO3−, —SO3H, —R42SO3−, —R42SO3H, —COOH, and —R42COOH, where R42 represents an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms);

(in the structural formula (7), wherein R52 to R57 are respectively and independently selected from the group consisting of H, —SO3−, —SO3H, —R35SO3−, —R35SO3H, —OCH3, —CH3, —C2H5, —F, —Cl, —Br, —I, —N(R35)2, —NHCOR35, —OH, —O−, —SR35, —OR35, —OCOR35, —NO2, —COOH, —R35COOH, —COOR35, —COR35, —CHO, and —CN, where R35 represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, at least one of R52 to R57 is a group selected from the group consisting of —SO3−, —SO3H, —R35SO3−, —R35SO3H, —COOH, and —R35COOH, Ht represents a heteroatom group selected from the group consisting of NR82, S, O, Se, and Te, where R82 represents hydrogen or a linear or branched alkyl group having 1 to 24 carbon atoms or substituted or non-substituted aryl group having 1 to 24 carbon atoms, the hydrocarbon chains of R52 to R57 mutually bond at arbitrary locations and may form a bivalent chain that forms at least one cyclic structure of saturated or unsaturated hydrocarbons of a 3 to 7-member ring together with the carbon atoms substituted by the groups, the cyclic bonded chain formed in this manner may contain a carbonyl, ether, ester, amide, sulfide, sulfinyl, sulfonyl or imino bond at arbitrary locations, and n represents the number of condensed rings sandwiched between a hetero ring and a benzene ring having substituents R53 to R56, and is 0 or an integer of 1 to 3);

(in the structural formula (8), wherein R58 to R66 are respectively and independently selected from the group consisting of H, —SO3−, —SO3H, —R35SO3−, —R35SO3H, —OCH3, —CH3, —C2H5, —F, —Cl, —Br, —I, —N(R35)2, —NHCOR35, —OH, —O−, —SR35, —OR35, —OCOR35, —NO2, —COOH, —R35COOH, —COOR35, —COR35, —CHO, and —CN, where R35 represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, at least one of R58 to R66 is a group selected from the group consisting of —SO3−, —SO3H, —R35SO3−, —R35SO3H, —COOH, and —R35COOH, and n represents the number of condensed rings sandwiched between a benzene ring having substituents R58 and R59 and a benzene ring having substituents R61 to R64, and is 0 or an integer of 1 to 3);

(in the structural formula (9), wherein R67 to R76 are respectively and independently selected from the group consisting of H, —SO3−, —SO3H, —R35SO3−, —R35SO3H, —OCH3, —CH3, —C2H5, —F, —Cl, —Br, —I, —N(R35)2, —NHCOR35, —OH, —O−, —SR35, —OR35, —OCOR35, —NO2, —COOH, —R35COOH, —COOR35, —COR35, —CHO, and —CN, where R35 represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, at least one of R67 to R76 is a group selected from the group consisting of —SO3−, —SO3H, —R35SO3−, —R35SO3H, —COOH, and —R35COOH, and n represents the number of condensed rings sandwiched between a benzene ring having substituents R67 to R69 and a benzoquinone ring, and is 0 or an integer of 1 to 3); and,

(in the structural formula (10), wherein R77 to R81 are respectively and independently selected from the group consisting of H, —SO3−, —SO3H, —R35SO3−, —R35SO3H, —OCH3, —CH3, —C2H5, —F, —Cl, —Br, —I, —N(R35)2, —NHCOR35, —OH, —O−, —SR35, —OR35, —OCOR35, —NO2, —COOH, —R35COOH, —COOR35, —COR35, —CHO, and —CN, where R35 represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, at least one of R77 to R81 is a group selected from the group consisting of —SO3−, —SO3H, —R35SO3−, —R35SO3H, —COOH, and —R35COOH, Xa− is at least one type of anion selected from the group of anions having a valence of 1 to 3 consisting of a chlorine ion, bromine ion, iodine ion, fluorine ion, nitrate ion, sulfate ion, hydrogensulfate ion, phosphate ion, borofluoride ion, perchlorate ion, thiocyanate ion, acetate ion, propionate ion, methane sulfonate ion, p-toluene sulfonate ion, trifluoroacetate ion, and trifluoromethane sulfonate ion, a represents the ion valence of X and is an integer of 1 to 3, and p represents the doping ratio and has a value of 0.001 to 1).

In addition, polyethylene dioxythiophene polystyrene sulfate is also used as a preferable water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group. Although this water soluble conducting polymer does not have any sulfonic acid groups introduced into the backbone of the conducting polymer, it has a structure in which polystyrene sulfonate is added as a dopant. This polymer can be produced by polymerizing 3,4-ethylene dioxythiophene (Bayer, Baytron M) with an oxidizing agent such as iron toluene sulfonate (Bayer, Baytron C). In addition, this polymer can also be acquired in the form of Baytron P (Bayer).

An even more preferable water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is a water soluble conducting polymer that contains 20 to 100% of the repeating unit represented by the following formula (11) relative to the total number of repeating units throughout the entire polymer:

(in the structural formula (11), wherein y represents an arbitrary number such that 0<y<1, R15 to R32 are respectively and independently selected from the group consisting of H, —SO3−, —SO3H, —R35SO3−, —R35SO3H, —OCH3, —CH3, —C2H5, —F, —Cl, —Br, —I, —N(R35)2, —NHCOR35, —OH, —O−, —SR35, —OR35, —OCOR35, —NO2, —COOH, —R35COOH, —COOR35, —COR35, —CHO, and —CN, where R35 represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R15 to R32 is a group selected from the group consisting of —SO3−, —SO3H, —R35SO3−, —R35SO3H, —COOH and —R35COOH).

Here, a water soluble conducting polymer in which the content of repeating units having at least one of a sulfonic acid group and a carboxyl group is 50% or more relative to the total number of repeating units of the polymer is used preferably since it has extremely favorable solubility in solvents such as water and water-containing organic solvents. The content of repeating units having at least one of a sulfonic acid group and a carboxyl group is more preferably 70% or more, even more preferably 90% or more, and particularly preferably 100%.

In addition, a substituent added to the aromatic ring is preferably an alkyl group, alkoxy group or halogen group, from the perspective of electrical conductivity and solubility, and water soluble conducting polymers having an alkoxy group are the most preferable. The most preferable water soluble conducting polymer among these combinations is shown in the following formula (12):

(in the structural formula (12), wherein R33 represents one group selected from the group consisting of a sulfonic acid group, carboxyl group, their alkaline metal salts, ammonium salts and substituted ammonium salts, R34 represents one group selected from the group consisting of a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, dodecyl group, tetracosyl group, methoxy group, ethoxy group, n-propoxy group, iso-butoxy group, sec-butoxy group, tert-butoxy group, heptoxy group, hexoxy group, octoxy group, dodecoxy group, tetracoxy group, fluoro group, chloro group and bromo group, X represents an arbitrary number such that 0<x<1, and n represents the degree of polymerization and has a value of 3 or more).

Here, at least a portion of R33 is preferably at least one of a sulfonic acid group and a carboxyl group of a free acid from the perspective of improving electrical conductivity.

Polymers obtained by various types of synthesis methods such as chemical polymerization or electrolytic polymerization can be used for a water soluble conducting polymer in the present invention. For example, synthesis methods described in Japanese Unexamined Patent Application, First Publication No. H7-196791 and Japanese Unexamined Patent Application, First Publication No. H7-324132 proposed by the inventors of the present invention can be applied. Namely, this refers to water soluble conducting polymers obtained by polymerizing at least one of the acidic group-substituted aniline represented by the following formula (13), its alkaline metal salt, ammonium salt and substituted ammonium salt, with an oxidizing agent in a solution containing a basic compound:



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Carbon nanotube composition, composite having a coated film composed of the same, and their production methods patent application.
###
monitor keywords

Browse recent Mitsubishi Rayon Co., Ltd. patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Carbon nanotube composition, composite having a coated film composed of the same, and their production methods or other areas of interest.
###


Previous Patent Application:
Electroconductive thermoplastic resin composition and plastic article including the same
Next Patent Application:
Method for producing fine particle dispersion and fine particle dispersion
Industry Class:
Compositions
Thank you for viewing the Carbon nanotube composition, composite having a coated film composed of the same, and their production methods patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.82221 seconds


Other interesting Freshpatents.com categories:
QUALCOMM , Monsanto , Yahoo , Corning ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.3629
Key IP Translations - Patent Translations

     SHARE
  
           

stats Patent Info
Application #
US 20090321688 A1
Publish Date
12/31/2009
Document #
12556406
File Date
09/09/2009
USPTO Class
252511
Other USPTO Classes
427122, 977932
International Class
/
Drawings
0


Your Message Here(14K)


Basic
Carbon Nanotube
Colloid
Conductivity
Coupling Agent
Ducting
Formability
Molecular Weight
Nanotube
Silica
Superior
Surfactant
Tubes
Weather


Follow us on Twitter
twitter icon@FreshPatents

Mitsubishi Rayon Co., Ltd.

Browse recent Mitsubishi Rayon Co., Ltd. patents

Compositions   Electrically Conductive Or Emissive Compositions   Elemental Carbon Containing   With Organic Component   Resin, Rubber, Or Derivative Thereof Containing