FreshPatents.com Logo
stats FreshPatents Stats
7 views for this patent on FreshPatents.com
2010: 7 views
Updated: June 10 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Method for digital photo management and distribution

last patentdownload pdfimage previewnext patent


Title: Method for digital photo management and distribution.
Abstract: Digital images are captured on a digital camera, automatically formatted, and uploaded to a server for review and collaborative modifications. An on-line web gallery is automatically generated by the server whereby low resolution versions of the images are transferred to the server and appear in the gallery within seconds from capturing the images. Among other things, a viewer located remotely from a photographer can observe new images in the gallery in real time as they are captured, place a request for post-production modifications to selected images and download a high resolution version of selected images. ...


USPTO Applicaton #: #20090309981 - Class: 3482071 (USPTO) - 12/17/09 - Class 348 


view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20090309981, Method for digital photo management and distribution.

last patentpdficondownload pdfimage previewnext patent

CROSS REFERENCE TO RELATED APPLICATIONS

This claims priority to and is a divisional application of U.S. patent application Ser. No. 11/382,926, filed May 11, 2006, which in turn claims priority to U.S. Provisional Patent Application No. 60/731,527, filed Oct. 31, 2005, both of which such applications are incorporated herein by reference.

1. FIELD OF INVENTION

This relates to the distribution and management of digital images generated by a digital camera.

2. BACKGROUND

In some contexts, time is of the essence for photographers, especially professional photographers engaged in photo shoots involving sporting events, unfolding important news stories, fashion shows, and celebrity events. Customers or employers of photographers who provide photos or images of this subject matter can be very demanding. They often operate in a commercially competitive environment where the first to provide such images to the general public can often achieve significant financial benefits. However there can be significant delays in providing professional images so that they can be made available to the general public. Many photographers use digital cameras to capture images at a photo shoot. At a later point in time, these images usually must be transferred from the camera to a computer located at a studio where the images can be formatted in order to modify their color, size, resolution, etc. and to add metadata. Then the photographers or their studios frequently must transfer these modified images to their customers or employers, etc. via email or other means so that they can make a selection of one or more desired images for use or purchase, and can collaborate with the photographer regarding further modifications to be made to the images (i.e., post production work). To request or discuss additional image modifications, phone calls, additional emails, etc. frequently were required.

Accordingly, there is a need to improve and facilitate the distribution and management of digital images so that high quality images can be made available to the end user more efficiently and in less time.

SUMMARY

OF THE ILLUSTRATED EMBODIMENTS

Embodiments of the invention include a method of obtaining images captured on a digital camera, automatically formatting these images, and uploading them to a server for review and collaborative modifications. An on-line web gallery is automatically generated by the server whereby low resolution versions of the images captured by the camera are automatically transferred to the server and appear in the gallery within seconds from capturing the images. Among other things, the viewer therefore can observe new images as they appear in the gallery, place a request for modifications to selected images and download the high resolution version of selected images.

In one embodiment, a computer data signal is for use with a digital camera adapted to capture a plurality of digital images having a first resolution. The signal is further for use with a server in communication via a network with a first computer having a first display screen. The computer data signal is embedded in a carrier wave representing at least one program for controlling a plurality of processors to execute the following:

The plurality of digital images is automatically modified to create a plurality of modified images. Each of the plurality of modified images has a second resolution that is less than the first resolution and includes one or more of a predetermined image file format, a predetermined image parameter, and predetermined metadata. The plurality of modified images is automatically transmitted to the server. A display of the plurality of modified images is automatically generated using the server, wherein the display is of the plurality of modified images appearing in a single window on the first display screen of the first computer. The predetermined image file format, the predetermined image appearance parameter, and the predetermined metadata are determined prior to the modifying of the plurality of digital images.

In one aspect, the computer data signal is further for use with a first storage device controlled by one of the plurality of processors. The first storage device and the processor are disposed in a housing that is other than the digital camera. The housing is adapted for attachment to the digital camera or adapted for carrying on a user\'s body. The at least one program is further for controlling the plurality of processors to execute the following: automatically receiving the plurality of digital images from the digital camera for storage in the first storage device. Automatically modifying the plurality of digital images includes automatically modifying the plurality of digital images using the processor, and automatically transmitting the plurality of modified images includes automatically transmitting the plurality of modified images using the processor.

In another aspect, the plurality of modified images is comprised of a first set of modified images and a second set of modified images. The server is further in communication via the network with a second computer having a second display screen. A predetermined first folder location and a predetermined second folder location are located on the server and are determined prior to automatically modifying the plurality of digital images.

Automatically transmitting the plurality of modified images to the server includes automatically transmitting the first set of modified images to the server for storage in the predetermined first folder location, and automatically transmitting the second set of modified images to the server for storage in the predetermined second folder location. Automatically generating the display of the plurality of modified images using the server includes automatically generating a first display of the first set of modified images located in the first folder location and automatically generating a second display of the second set of modified images located in the second folder location. The first display is of the first set of modified images appearing in a first single window on the first screen of the first computer, and the second display is of the second set of modified images appearing in a second single window on the second screen of the second computer.

There are additional aspects to the present inventions. It should therefore be understood that the preceding is merely a brief summary of some embodiments and aspects of the present inventions. Additional embodiments and aspects are referenced below. It should further be understood that numerous changes to the disclosed embodiments can be made without departing from the spirit or scope of the inventions. The preceding summary therefore is not meant to limit the scope of the inventions. Rather, the scope of the inventions is to be determined by appended claims and their equivalents.

BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects and advantages of the present invention will become apparent and more readily appreciated from the following description of certain embodiments, taken in conjunction with the accompanying drawings of which:

FIG. 1 is a functional block diagram of a hardware operating environment of a digital photo management system according to an embodiment of the present invention;

FIGS. 2A and 2B show detailed exterior front and rear views of the module of FIG. 1;

FIG. 3 is a functional block diagram of the module of FIG. 1;

FIG. 4 is a functional block diagram of the server of FIG. 1;

FIG. 5 shows a method for generating a web photo gallery in accordance with an embodiment of the invention;

FIG. 6 shows a method for using module soft keys for the distribution of images in accordance with an embodiment of the invention;

FIG. 7 is an illustration of a web-based gallery displayed on a display screen in accordance with an embodiment of the invention;

FIG. 8 is an illustration of a web-based window for the collaborative editing of a selected digital image in accordance with an embodiment of the invention;

FIG. 9 shows a method for the collaborative editing of a selected digital image in accordance with an embodiment of the invention;

FIG. 10 is an illustration of a slide show window according to an embodiment of the invention; and

FIG. 11 shows a method by which a high resolution version of an image is distributed according to an embodiment of the invention.

DETAILED DESCRIPTION

The following description is of the best mode presently contemplated for carrying out the invention. Reference will be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. It is understood that other embodiments may be used and structural and operational changes may be made without departing from the scope of the present invention.

Embodiments of the invention include the capturing of images on a digital camera, automatically formatting these images, and uploading them to a server for review and collaborative modifications. An on-line web gallery is automatically generated by the server whereby low resolution versions of the images are automatically transferred to the server and appear in the gallery within seconds from capturing the images. Among other things, a viewer located remotely from a photographer can observe new images in the gallery in real time as they are captured, place a request for post-production modifications to selected images and download the high resolution version of selected images.

FIG. 1 is a functional block diagram of a hardware operating environment of a digital photo management system 100 according to an embodiment of the present invention. The management system 100 comprises a digital camera 102, a module 104, a processing server 106 and a plurality of customer or client computers 108. The module 104 communicates with the camera 102 via a FireWire connection 110. In alternative embodiments, the module 104 communicates with the camera 102 via other cabled connections, or wirelessly via infrared or radio frequency communications. The module 104, in turn, communicates with the processing server 106 wirelessly via the 802.11(g) communications protocol. In alternative embodiments, however, other communications protocols may be used as well as using wireless or wired links. Moreover, the module 104 includes cellular communication circuitry and can communicate directly with other devices via the Internet 112. The processing server 106 is connected to the Internet 112 through which the client computers 108 communicate with the processing server 106.

FIGS. 2A and 2B show detailed exterior front and rear views of the module 104 of FIG. 1. In this embodiment, the module 104 is attached to the camera 102 and communicates with the camera via the FireWire cable 110. The module 104 includes a compartment 114 for batteries and another section 116 for one or more mass storage devices, such as hard disk drives. Extending from one side is a first antenna 118 coupled to Wi-Fi transceiver circuitry and a second antenna 120 coupled to cellular transceiver circuitry for a wireless broadband connection to the Internet. The module 104 has a rear panel 122 that includes a keypad 124 as well as a plurality of programmable, “soft” keys or buttons 126. Also included is a scroller device 128, such as a touchpad, as well as a display screen 130.

FIG. 3 is a functional block diagram of the module 104 of FIG. 1. Shown are a central processing unit (CPU) 302, a main memory 304, a mass storage device 306, a keypad and soft key interface 308, a scroll device interface 310, a display screen or video controller 312, Wi/Fi transceiver circuitry 314, cellular transceiver circuitry 316, and fire-wire interface circuitry 318, all of which are coupled via a bi-directional system bus 320.

The keypad/soft key interface 308 and the scroll device interface 310 are for introducing user input to the module and for communicating that user input to the CPU 302. The keypad/soft key interface 308 includes connections to the QWERTY keypad 124 along with the programmable or “soft” keys 126 (FIG. 1). The mass storage device 306 may include one or more hard disk drives, or alternatively other forms of both fixed and removable media, such as magnetic, optical or magnetic optical storage systems or any other available mass storage technology. The bus 320 may contain, for example, a 32-bit data bus for transferring data and commands between and among the components, such as the CPU 302, the main memory 304, and the mass storage device 306.

The main memory 304 and the mass storage device 306 are used for the storage and use of an operating system program, a module photo management program, digital image data, etc. The Wi/Fi transceiver circuitry 314 and the cellular transceiver circuitry 316 permit the module 104 to selectively communicate with the processing server 106 directly or via the Internet 112 as conditions or equipment permit. Additionally, the module 104 can communicate directly with other devices via the Internet 112 without the necessity of communicating via the server 106. The FireWire interface circuitry 318 is for communications and data transfer with the digital camera 102.

The module 104 described above is for purposes of example only. Embodiments of the present invention may be implemented in any type of computer system or programming or processing environment. The module, or the components therein, may be integral with the camera. Alternatively, the module may be in the form of a housing mechanically attached directly to the camera, or alternatively still, may be carried by a user of the camera on a part of the user\'s body. In yet another embodiment, the module may be located apart from the camera and the camera user if the camera is in wireless communication with the module, or if there is a cable of sufficient length for wired communication. Further, in lieu of a module as such, a laptop general purpose computer, a desktop computer or other similar device may be used.

FIG. 4 is a functional block diagram of the server 106 of FIG. 1 according to an embodiment of the invention. The server 106, such as a general-purpose computer, is used to receive digital images from the module 104 (FIG. 1) and provide these images in a web-page format to customers (or other authorized persons) via a network, such as the Internet. The customer\'s devices could be another computer, such as the computers 108 of FIG. 1, or other suitable system having a processor, a display and user input devices.

The server 106 includes a CPU 402, a system memory 404, preferably including both high speed random access memory (RAM) and non-volatile memory, such as read only memory (ROM), erasable or alterable non-volatile memory (e.g., flash memory), and a mass storage device 406, such as a hard disk drive, for storing operating system programs, data, cryptographic keys, application programs, etc. The server further includes one or more input/output devices, including, for example, a network interface 408 for communicating with other systems via a network such as the Internet. A port 410 for connecting to, e.g., a portable device, another computer, or other peripheral devices, is also included along with one or more removable media drives 412 for reading from, and/or writing to, e.g., diskettes, compact discs, DVDs, or other computer readable media. A user interface includes a display screen controller 414 and one or more input devices 416, such as keyboard and mouse. A bi-directional bus 418 interconnects the above-described components of the system.

The operation of the server 106 is controlled primarily by programs contained in the system memory 404 and executed by the CPU 402. These programs include program modules for accepting input data and for processing the input data in accordance with the embodiments of the invention described herein. For example, the program includes one or more program modules for receiving digital images from the hardware module 104 (FIG. 1), and for providing the images to authorized customers or other parties in a web page based display. One of ordinary skill in the art will appreciate, however, that some or all of the functionality of these program modules could be readily implemented in hardware without departing from the principles of the present invention.

FIG. 5 shows a method for generating a web photo gallery in accordance with an embodiment of the invention. First, the module photo management application is started, either automatically by turning on the digital camera or turning on the module, or manually via user controls on the module. (Step 502) The module establishes wireless communications with the processing server. (Step 504) Image criteria are entered into the module by selecting an image file format and image appearance parameters, and by entering certain metadata. (Step 506) The image file format can be any format used for digital images, including for example, a JPG format, a JPG2 format, a RAW format, a TIFF format, a PNG format, a GIF format, or a BMP format. Examples of the image parameters include color balance, brightness, saturation, white balance, gamma, sharpness and contrast, and are set by the user by applying them to a test image. Examples of user-input metadata include the user\'s identity, a subject matter location, a subject matter identity, pricing information, and customer names and passwords for controlling access to the image data by others downstream of the user.

Next, the user enters predetermined first and second folder locations into the module (Step 508). These first and second folder locations are on the server and correspond to access by different customers or groups of customers of the user or by other authorized persons. Additionally, the user can enter another folder location on the module for the storage of images received from the camera. In alternative embodiments, the user can enter ftp folder addresses or URL addresses corresponding to locations on devices other than the server. These other addresses can be in addition to the first and second folder locations on the server or these other addresses can be in lieu of the first and second folders.

Still referring to FIG. 5, a plurality of digital images having a first resolution are captured with a digital camera. (Step 510) The images are next transmitted from the camera to the module. (Step 512) The module modifies the digital images by converting them to a lower resolution and by applying the predetermined image file format, image parameters, and metadata. (Step 514) Then, the modified images are transmitted to the server and stored in the first folder location on the server. (Step 516) A customer\'s computer establishes communication with the server via a network, such as the Internet, and the customer submits a password. (Step 518) If the password is correct, the server generates a web page display of all of the modified images so that they appear in a single window on the customer\'s computer screen. (Step 520) Additional copies of the modified images are also transmitted to any other folder or URL destination addresses that have been entered by the user during module configuration. Once communication is established, further images captured by the camera are automatically processed as in steps 512-516 and 520 and appear in real time on the customer\'s screen.

The user is not limited to capturing images for receipt by only one customer. Prior to the photo shoot, the user can enter a predetermined second folder location on the server. During the shoot, the user can cause the module to transmit subsequent images to the second folder that is dedicated to another customer (or group of customers). The server requires a different password associated with the second folder prior to generating a display of the images so that they appear in a single window on the second customer\'s computer screen.

By assigning server destination folders (or other URL addresses or ftp folder addresses) to programmable soft keys or buttons on the module, the user can actuate them for very rapid image transfer assignments. When subsequent photos are shot, the image data is then automatically sent to one or to more pre-defined destination addresses. Moreover, with the use of the soft keys the user can rapidly change the destination of future shots during the middle of a photo shoot.

FIG. 6 shows a method for using the module soft keys for the distribution of images in accordance with an embodiment of the invention. First, the user programs one of the module\'s programmable or soft keys to correspond to a first address. (Step 602) Then a second soft key is programmed to correspond to a second address. (Step 604) The process continues for other soft keys that the user may desire to program. The addresses can be folder locations on the server or ftp folders or URL addresses corresponding to other computers on the Internet. Then, when the user is ready to begin the photo shoot, the user manually actuates the soft key associated with one of the addresses that is desired for the destination of the upcoming photos. (Step 606)

The user then captures a plurality of digital images having a first resolution with a digital camera. (Step 608) The images are automatically transmitted from the digital camera to the module for storage therein. (Step 610) The module modifies the images by reducing their resolution and by applying predetermined image parameters, a predetermined image file format, and by associating predetermined metadata with the images (Step 612). Then, the module automatically transmits the modified images to the address (or addresses) associated with the selected soft key. (Step 614)

When the user desires to change the destination of a subsequent group of photos to be taken during the photo shoot, the user manually actuates another soft key on the module. (Step 616) Then the user captures a second plurality of digital images having the first resolution. (Step 618) The images are automatically transmitted from the digital camera to the module for storage therein. (Step 620) The module modifies the images by reducing their resolution and by applying the predetermined image parameters, the predetermined image file format and by associating predetermined metadata with the images. (Step 622) Then, the module automatically transmits the modified images to the address (or addresses) associated with the other, selected soft key. (Step 624)

The addresses can correspond to one or more folders on the server. The addresses can also correspond to ftp folders or URL addresses of customer computers or any other computers in communication directly with the module via a network or with the server via the network.

As previously mentioned, the destination addresses that can be programmed into the module include one or more folders on the user\'s server. As photos are shot, the image data is modified as described above and low resolution versions of the image data (along with associated metadata) are wirelessly transmitted to the server destination folder. Upon receipt of this image data and associated metadata in the folder, the server creates a web-based gallery of these photos for viewing by authorized persons who can access this gallery via the Internet. This is accomplished automatically, so that as a photo shoot occurs, the image data is processed as described above, sent to the server folder, and then made available to customers or other authorized users on the web page photo gallery. The authorized users provide a user name and password via their web browser to access the images, and a screen will appear in the user\'s web browser in which low resolution versions of the photos will appear as they are being taken during the photo shoot.



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Method for digital photo management and distribution patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Method for digital photo management and distribution or other areas of interest.
###


Previous Patent Application:
Image acquiring device with positioning assisting functionality
Next Patent Application:
Method and system for image stabilization
Industry Class:
Television
Thank you for viewing the Method for digital photo management and distribution patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.51953 seconds


Other interesting Freshpatents.com categories:
Medical: Surgery Surgery(2) Surgery(3) Drug Drug(2) Prosthesis Dentistry  

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2--0.7581
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20090309981 A1
Publish Date
12/17/2009
Document #
12544165
File Date
08/19/2009
USPTO Class
3482071
Other USPTO Classes
3482312, 386 52, 348E07001, 386E05001
International Class
/
Drawings
11


Digital Images
Formatted
High Resolution
Upload


Follow us on Twitter
twitter icon@FreshPatents