FreshPatents.com Logo
stats FreshPatents Stats
3 views for this patent on FreshPatents.com
2011: 1 views
2010: 2 views
Updated: June 10 2014
newTOP 200 Companies filing patents this week


    Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • RSS rss
  • Create custom RSS feeds. Track keywords without receiving email.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Apparatus for applying filler material and method of using same

last patentdownload pdfimage previewnext patent


Title: Apparatus for applying filler material and method of using same.
Abstract: A nozzle for applying filler material within a groove is provided that includes a plate member, an orifice through the plate member, a guide member for engaging the groove, and a pliable attachment. The orifice is in communication with a supply of the filler material. The guide member protrudes from the plate member and has a width less than the groove. The pliable attachment has a channel with an angled portion for directing the filler material into the groove. The nozzle may also be used independent from the attachment. Also provided is a method for applying filler material into the spaces between tiles. The method include steps directed to the preparation of the filler material, such as combining a cementitious material with a plasticizer in order to form an admixture that has a viscosity making it suitable for application through the nozzle. ...


USPTO Applicaton #: #20090294489 - Class: 2226112 (USPTO) - 12/03/09 - Class 222 
Dispensing > With Casing Or Support >Ambulant >With Guide Or Guide Line Marker >Mortar Applying Machine

view organizer monitor keywords


The Patent Description & Claims data below is from USPTO Patent Application 20090294489, Apparatus for applying filler material and method of using same.

last patentpdficondownload pdfimage previewnext patent

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation-in-Part of and claims priority to U.S. application Ser. No. 12/131,484 filed Jun. 2, 2008 to Gene Keohan entitled Apparatus for Applying Filler Material and Method of Using Same, currently pending, the entire disclosure of which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

Billions of square feet of tile are installed in the United States every year. It is very common to tile floors, walls, bathtubs, showers, counters, backsplashes and swimming pools in both residential and nonresidential settings. According to one estimate, approximately 2.7 billion square feet of tile were installed in the United States in 2006.

Normally, after tiles have been installed and have had a chance to set up, a filler material, such as a grout, is applied to the void spaces between the tiles. In doing so, a quantity of grout is first placed on or around the tiles. A grout float or trowel is then used to spread and disperse the grout into the void spaces between the tiles. When spreading and dispersing the grout, the grout float is typically moved back and forth in diagonal sweeping motions in order to work the grout into the void spaces between the tiles. In order to effectively force the grout into the void spaces, the grout float is held at an angle with respect to the tiles. Once the void spaces are completely filled with grout, the excess grout can be scraped from the tiles using the side of the grout float. This is often a time consuming and messy process and can take a large toll on the grout applicator\'s knees and back.

Accordingly, a need exists for a device that can be used to apply filler materials to the void spaces between tiles and the like in a quicker and cleaner fashion. A need further exists for a device that can be used to apply filler materials wherein the applicator does not have to hunch down on his or her hands and knees. Additionally, a need exists for a method in which filler materials can be applied in a quicker and cleaner fashion and that does not require the applicator to hunch down on his or her hands and knees, thereby preventing pain or injury.

SUMMARY

OF THE INVENTION

One embodiment of the present invention is directed to an apparatus for applying filler material within a groove that includes a plate member, an orifice through the plate member, a guide member for engaging the groove, and a pliable attachment. The orifice is in communication with a supply of the filler material. The guide member protrudes from the plate member and has a width less than the groove. The pliable attachment has a channel with an angled portion for directing the filler material into the groove.

Another embodiment of the present invention is directed to an apparatus for distributing flowable materials within the space between two tiles that includes a tubular portion, a plate, an orifice through the plate, a guide member, and a supple attachment. The tubular portion is in communication with a supply of the filler material. The plate has a width greater than the space between the tiles and is adapted for contacting a surface on either side of the space. The orifice is in communication with the tubular portion and the guide member is configured to fit within the space between the tiles. The supple attachment has a cavity in communication with the orifice. The cavity includes a channel with an angled portion for directing the filler material into the space.

A further embodiment of the present invention is directed to a nozzle for applying grout between tiles that includes a tube, a plate member, an orifice through the plate member, and a guide member. The tube is configured to be removably mounted to and in communication with a device for feeding the grout. The plate member has a width greater than the distance between the tiles. The orifice is in communication with the tube for distributing the grout in between the tiles. The guide member protrudes from the plate member and is configured for engaging a space between the tiles.

The present invention is also directed to a method for applying filler material between tiles comprising the steps of providing a nozzle in communication with a supply of filler material, placing the nozzle on the tiles, causing the filler material to be supplied to the nozzle and distributed from the nozzle to a space between the tiles, and moving the nozzle in a direction in order to continue the distribution of the filler material between the tiles. The nozzle includes a plate member with an orifice for distributing the filler material between the tiles and a guide member protruding from the plate member. The method for applying the filler material may also include steps directed to the preparation of the filler material, such as combining a cementitious material with a plasticizer in order to form an admixture that has a viscosity making it suitable for application through the nozzle.

Certain embodiments of the invention are outlined above in order that the detailed description thereof may be better understood, and in order that the present contributions to the art may be better appreciated. In this respect, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of embodiments in addition to those described and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting.

As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention. Though some features of the invention may be claimed in dependency, each feature has merit when used independently.

DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Further features of the present invention will become apparent to those skilled in the art to which the present invention relates from reading the following description with reference to the accompanying drawings, in which:

FIG. 1 is an exploded bottom perspective view of a nozzle with an attachment having a tapered cavity and parallel-walled channel in accordance with one embodiment of the present invention;

FIG. 2 is an assembled bottom perspective view of a nozzle with an attachment having a tapered cavity and parallel-walled channel in accordance with one embodiment of the present invention;

FIG. 3 is an exploded bottom perspective view of a nozzle with an attachment having a parallel-walled chamber and tapered channel in accordance with one embodiment of the present invention;

FIG. 4 is an assembled bottom perspective view of a nozzle with an attachment having a parallel-walled chamber and tapered channel in accordance with one embodiment of the present invention;

FIG. 5 is an exploded bottom perspective view of a nozzle with an attachment having multiple channels;

FIG. 6 is an assembled bottom perspective view of a nozzle with an attachment having multiple channels;

FIG. 7 is an exploded side perspective view of a machine for applying filler materials into spaces between tiles; and

FIG. 8 is an assembled side perspective view of a machine for applying filler materials into spaces between tiles.

DETAILED DESCRIPTION

OF THE INVENTION

The invention will now be described with reference to the drawing figures, in which like reference numerals refer to like parts throughout. For purposes of clarity in illustrating the characteristics of the present invention, proportional relationships of the elements have not necessarily been maintained in the drawing figures.

One embodiment of the present invention is directed to a nozzle 10 for applying filler material (not shown) into at least one void space or groove (not shown) between tiles (not shown) or the like. As will be discussed in further detail hereinbelow, the nozzle 10 is configured to be in substantially fluid communication with a supply of filler material for distributing the filler material into the void spaces or grooves between tiles. In use, the nozzle 10 is configured to be pushed or pulled in a direction represented by arrow A.

As illustrated in FIG. 1, the nozzle 10 includes a substantially solid back plate 12 and an attachment 14. The back plate 12 can be constructed from a plastic such as polyethylene, polypropylene, acrylonitrile butadiene styrene (ABS), polyvinyl chloride (PVC), urethane, and combinations thereof. The back plate 12 can also be constructed from a cast, forged, or shaped metal, such as aluminum, steel, an alloy, and combinations thereof. In this embodiment, the back plate 12 includes a plate member 16, a tubular member 18, and a guide member 20. In the embodiment shown in FIGS. 1-2 and in most tiling applications wherein the tiles are being installed on a generally flat floor or wall, the plate member 16 is generally flat or planar, but it will be appreciated by one skilled in the art that the plate member 16 can have any suitable shape or form suitable for use in the particular application for which the nozzle 10 is to be used. In certain embodiments, the plate member 16 has a width greater than the width of the spaces or grooves between the tiles.

The plate member 16 includes a leading or front edge 24 and a trailing or back edge 26 and further includes a first surface 17, an opposing second surface 19, and an orifice 22 defined therethrough. In certain embodiments, orifice 22 is generally rectangular in shape as shown in FIGS. 1-4 or, in other embodiments such as those shown in FIGS. 5-6, orifice 22 is generally circular. However, it will be appreciated that orifice 22 may have virtually any suitable shape including, but not limited to, square, triangular, oval, and the like. In certain embodiments, the orifice 22 is disposed directly adjacent the guide member 20 has a width, wo that can be less than, equal to, or greater than the width of the space or groove between the tiles. While FIG. 1 shows the orifice 22 as having a generally rectangular shape, it will be appreciated by one skilled in the art that the orifice 22 can take on other shapes or forms, so long as filler material is allowed to pass through the orifice 22.

The tubular member 18 includes a generally sidewall 25 having a substantially hollow interior, a first end 21 and a second end 23. The sidewall 25 can have any suitable cross-sectional shape (eg. circle, oval, square, rectangle, etc.). Sidewall 25 may include an aperture 28 configured to receive a fastener therethrough such as a set screw, pin, bolt, hair pin clip, or spring-loaded push button, and the like for coupling nozzle 10 to a supply of filler material as discussed in detail hereinbelow. As shown in FIG. 1, the tubular member second end 23 is operably coupled to and extends outwardly from the plate member first surface 17 such that the hollow interior of sidewall 25 is in fluid communication with orifice 22. The tubular member 18 can also be adjustably connected to the plate member 16 using, for example, an elbow joint (not shown) or the like disposed between the plate member first surface 17 and the tubular member second end 23 thereby allowing for greater flexibility in adjusting an angle α at which the tubular member 18 extends outwardly from the plate member 16. Alternatively, the tubular member 18 can be pivotably connected to the first surface 17 of plate member 16 using a pivot joint (not shown) or the like disposed between first surface 17 and second end 23. In this embodiment, the pivot joint includes an axis approximately perpendicular to the plate member 16 or an axis approximately longitudinal to the tubular member 18.

The angle α at which the tubular member 18 extends outwardly from the plate member 16 can vary from embodiment to embodiment. For example, in certain embodiments, α is between about 90 degrees and 135 degrees, and more preferably between about 115 degrees and 125 degrees. In other embodiments, α is preferably between about 45 degrees and 90 degrees.

As illustrated in FIG. 1, the guide member 20 protrudes outwardly from the second surface 19 of the plate member 16 proximate the plate member\'s leading edge 24. The guide member 20 is configured to engage the space or groove between the tiles. The guide member 20 has a width wg that is less than the width of the space or groove between the tiles. The width of the space or groove between the tiles can vary from application to application, depending upon the type and size of tile used and further depending upon the preferences of the person for whom the tile is being installed. Usually, the width of the spaces or grooves is between 0.0625 inches and 1 inch, and most often between 0.125 inches and 0.5 inches. Because the nozzle 10 can also be used for applying concrete or grout between bricks or stones, which are normally separated by larger spaces, the width wg of the guide may be as great as 1.5 inches or more.

The guide member 20 also has a length, lg. That length, lg, is great enough so that the guide member 20 extends past surface 44 of the attachment 14, but not so great that it comes into contact with the flooring or wall on which the tiles are installed. Thus, for most tiling applications, lg is not normally greater than the combination of the thicknesses of the attachment 14 and the tiles. The guide member 20 may include beveled edges 34 to aid in the movement of the nozzle 10.

As shown in FIG. 1, the attachment 14 includes a chamber or cavity 50, a slot 62, and at least one channel 56. The attachment 14 can be constructed of a pliable or flexible material. For example, the attachment 14 may be constructed from a plastic foam-like material such as polypropylene or polyethylene. The attachment 14 may also be constructed from a rubber foam-like material such as Neoprene or vulcanized rubber. The attachment 14 may also be made of combinations of these materials or any other material suitable for use in the present invention.

A first surface 42 of attachment 14 is configured to be removably coupled or, alternatively, affixed to the front surface 19 of the plate member 16. As shown in FIGS. 1-2, when coupled or affixed, the attachment first surface 42 is matingly engaged with the plate member second surface 19 such that the cavity 50 is in communication with the orifice 22. The attachment 14 and plate member 16 can be coupled or affixed by use of an adhesive, interlocking members, fasteners or any other fastening methods now known or hereafter developed. As illustrated in FIGS. 1 and 2, the cavity 50 has a tapered configuration such that it decreases in width from front to back. As the width of the cavity 50 decreases, from front to back, the cross-sectional area of the cavity 50 also decreases from front to back toward channel 56. This decrease in cross-sectional area, coupled with the constant flow of filler material, causes the filler material to increase in velocity as it travels from front to back in the cavity 50. The increase in velocity of the filler material aids in forcing the filler material into the spaces or grooves between the tiles.

The attachment 14 also includes at least one channel 56 having a pair of substantially parallel sidewalls 52 so that channel 56 has a substantially uniform width, wc, from front to back. Like the orifice 22, the channel\'s 56 width, wc, can be less than, equal to, or greater than the width of the spaces or grooves between the tiles. Thus, the channel\'s width wc may be between about 0.0625 inches and 1 inch, or alternatively between about 0.125 inches and 0.5 inches for tile applications. Again, because the nozzle 10 can also be used in applying concrete or grout between bricks or stones, the channel\'s width wc may be as great as 1.5 inches or more.

The channel 56 can also include a wall 58 that further directs the filler material into the spaces or grooves. The wall 58 is sloped from front to back. In addition to directing the filler material into the space or groove, the sloped wall 56 translates to the channel 56 having a decreasing cross-sectional area from front to back. Like the cavity 50, this decrease in cross-sectional area causes the filler material to increase in velocity as it travels from front to back in the channel 50 and, therefore, aids in forcing the filler material into the spaces or grooves.

The attachment 14 further includes a contacting surface 44. In use, this surface 44 comes into substantially sealing contact with the tiles. This substantially sealing contact prevents the filler material from escaping via the front, back, or sides of the attachment 14. While coming into substantially sealing contact with the tiles, the contacting surface 44 also allows the nozzle 10 to slide on the tiles when it is pushed or pulled. The contacting surface 44 also wipes excess filler material from the tiles, thereby significantly reducing the amount of clean up time and effort required. In one embodiment, the attachment 14 extends around the guide member 20. In such an embodiment, the attachment 14 includes a slot 62 for receiving the guide member 20. The attachment 14 can also have a beveled portion 64 proximate its leading edge 46 to aid the movement of the nozzle over uneven surfaces.

In one embodiment, the nozzle 10 does not include an attachment 14. Rather, it only includes the solid back plate 12. In such a case, the solid back plate 12 can further include a channel, like the channel 56 described above. The solid back plate 12 may also include a cavity, like the cavity 50 described above. Like the channel 56 and cavity 50 described above, the channel and cavity that can be included in the solid back plate 12 would aid in forcing the filler material into the spaces or grooves.

FIGS. 3 and 4 illustrate another embodiment of the nozzle 10. As shown, the cavity 50 has sidewalls 54 that are substantially parallel with one another, giving it a substantially uniform width and cross-sectional area from front to back. As with the other embodiments, the cavity 50 can have a width that is less than, equal to, or greater than the width of the space or groove between the tiles.

In the embodiment shown in FIGS. 3 and 4, the channel sidewalls 52 are converging, giving the channel 56 a tapered configuration. The channel 56 decreases in width, wc, from front to back. Again, this decrease in width, wc, translates into a decrease in cross-sectional area causing the filler material to increase in velocity as it travels from front to back and aids in forcing the filler material into the spaces or grooves between the tiles. As shown in FIGS. 3 and 4, the channel 56 also includes a wall 58 that further directs the filler material into the groove or space. Again, this wall 58 is sloped from front to back, thus causing a decrease in cross-sectional area of the channel 56 from front to back and an increase in the velocity of the filler material.

In the embodiment shown in FIGS. 3 and 4, the guide member 20 protrudes from the plate member 16 from a location behind the leading or front edge 24. While the guide member 20 is shown protruding directly adjacent the orifice 22, it need not protrude directly adjacent the orifice 22, and can protrude in any area in front of the orifice 22. This embodiment also demonstrates a longer, narrower orifice 22. Again, like other embodiments, the orifice 22 can have a width, wo, that is less than, equal to, or greater than the width of the spaces or grooves between the tiles. Furthermore, this embodiment includes apertures 28 in the tubular member 18 for receiving a fastening device, such as a circlip 38, retaining ring, retaining pin, or snap ring, among others.

One variation of the nozzle 10 shown in FIGS. 3 and 4 does not include an attachment 14. Rather, it just includes the solid back plate 12. In such a ease, the solid back plate 12 can further include a channel, like the channel 56 described above. The channel 56 can be attached to and in direct communication with the orifice 22. Like the channel 56 described above, the channel that can be included in the solid back plate 12 would aid in forcing the filler material into the spaces or grooves.

FIGS. 5 and 6 illustrate yet another embodiment of the nozzle 10. As shown, the attachment 14 in this embodiment includes multiple channels 56. These multiple channels 56 can be configured to simultaneously distribute filler material into multiple spaces or groves that are substantially parallel to one another. Thus, rather than distributing filler material into only one space or groove at a time, this embodiment can distribute it into multiple spaces or grooves. While this embodiment can be used for tiles of any width, it is most often used for tiles having narrower widths. As illustrated in FIGS. 5 and 6, the channels 56 can also include walls 58 that further direct the filler material into the spaces or grooves. The walls 58 are sloped from front to back and aid in forcing the filler material into the spaces or grooves, as discussed with the other embodiments above.

Like the other embodiments, the width of the channels, wc, can be less than, equal to, or greater than the width of the spaces or grooves between the tiles. The distance, dc, between the centers of the channels is determined by the width of the tiles. The distance, dc, between the centers of the channels is normally equal to the width of the tiles plus the width of the spaces or grooves between the tiles. For example, if the tiles were 1.0 inch wide with 0.25 inch spacings between them, then the distance, dc, would be 1.25 inches. The distance, dc, is usually between 0.625 inches and five inches

While the embodiment in FIGS. 5 and 6 shows the attachment 14 having five channels 56, the attachment 14 may include more than five or less than five channels.

As shown, the cavity 50 includes a wall 51 having an orifice 53. In order to help the filler material be more evenly distributed to all of the channels 56, the orifice 53 has a tongue portion 55. Even though a tongue portion 55 is shown in FIGS. 5 and 6, it will be appreciated by one skilled in the art that other configurations and shapes can be used to help the filler material be more evenly distributed to all of the channels 56. The attachment 14 can also have a rounded portion 66 proximate its leading edge 46 to aid the movement of the nozzle over uneven surfaces.

As set forth above, the orifice 22 in the plate member 16 can be of a variety of shapes, so long as filler material is allowed to pass through the orifice 22. As shown in FIG. 5, the orifice 22 is a substantially circular shape. The diameter of the circular-shaped orifice 22 can be less than, equal to, or greater than the width of the spaces or grooves between the tiles.

As further shown in FIG. 5, β represents the angle at which the tubular member 18 is connected to the plate member 16. Again, the nozzle 10 can be configured to be pushed by the user along the tiles or pulled by the user along the tiles. In cases where the nozzle 10 is pushed, β will normally be between about 90 degrees and 135 degrees, and most preferably be between about 95 degrees and 105 degrees. In cases where the nozzle 10 is pulled, β will normally be between about 45 degrees and 90 degrees. As illustrated in FIGS. 5 and 6, the guide member 20 can have a rounded edge 36 to aid in the movement of the nozzle. Again, the nozzle 10 can also be configured such that the angle at which the tubular 18 member is connected to the plate member 16 can be adjusted through, for example, an elbow joint. Additionally, the tubular member 18 can have the ability to pivot or swivel with respect to the plate member 16 on an axis approximately perpendicular to the plate member 16 or an axis approximately longitudinal with the tubular member 18. The tubular member 18 can have apertures 30 configured for receiving a fastening device, such as a circlip 38

One variation of the nozzle 10 shown in FIGS. 5 and 6 does not include an attachment 14. Rather, it just includes the solid back plate 12. In such a case, the solid back plate 12 can further include channels, like channels 56 described above. The solid back plate 12 may also include a cavity 50. To help the filler material be more evenly distributed to all of the channels 56, the orifice 22 in the solid back plate 12 may have a tongue portion similar to the tongue portion 55 described above.

As mentioned above, in use, the nozzle 10 normally receives filler material from a feeding device. That feeding device can be a handheld machine 68, like the one shown in FIGS. 7 and 8, or can be a larger, stand-alone machine (not shown) to which the tubular member 18 of the nozzle 10 is connected via a hose (not shown). In use, the tubular member 18 normally receives filler material from a feeding back plate and passes the filler material on though the orifice 18. As will be discussed in further detail below, the feeding device can be a handheld machine 68, like the one shown in FIGS. 7 and 8, or can be a larger, stand-alone machine (not shown) to which the tubular member 18 is connected to via a hose (not shown).



Download full PDF for full patent description/claims.

Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Apparatus for applying filler material and method of using same patent application.
###
monitor keywords



Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Apparatus for applying filler material and method of using same or other areas of interest.
###


Previous Patent Application:
Tamper-evident container with pour-out container fitment
Next Patent Application:
Bow maker
Industry Class:
Dispensing
Thank you for viewing the Apparatus for applying filler material and method of using same patent info.
- - - Apple patents, Boeing patents, Google patents, IBM patents, Jabil patents, Coca Cola patents, Motorola patents

Results in 0.85767 seconds


Other interesting Freshpatents.com categories:
Qualcomm , Schering-Plough , Schlumberger , Texas Instruments ,

###

All patent applications have been filed with the United States Patent Office (USPTO) and are published as made available for research, educational and public information purposes. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not affiliated with the authors/assignees, and is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application. FreshPatents.com Terms/Support
-g2-0.3099
     SHARE
  
           

FreshNews promo


stats Patent Info
Application #
US 20090294489 A1
Publish Date
12/03/2009
Document #
12476744
File Date
06/02/2009
USPTO Class
2226112
Other USPTO Classes
401137, 401171, 222324
International Class
/
Drawings
9



Follow us on Twitter
twitter icon@FreshPatents