Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
Next
Prev

Process for the reduction of endotoxins in a plasmid preparation using a carbohydrate non-ionic detergent with silica chromatography




Title: Process for the reduction of endotoxins in a plasmid preparation using a carbohydrate non-ionic detergent with silica chromatography.
Abstract: The present invention provides methods for the reduction of endotoxins in a plasmid preparation using a carbohydrate non-ionic detergent with silica chromatography. ...


Browse recent Sigma-aldrich Company patents


USPTO Applicaton #: #20090240044
Inventors: Kevin Bernard Ray, Carol Ann Kreader, Fuqiang Chen, David Eric Cutter


The Patent Description & Claims data below is from USPTO Patent Application 20090240044, Process for the reduction of endotoxins in a plasmid preparation using a carbohydrate non-ionic detergent with silica chromatography.

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 11/108,317 filed on Apr. 18, 2005, which claims the benefit of Provisional Application Ser. No. 60/565,026 filed on Apr. 23, 2004, each of which is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

- Top of Page


The present invention relates to methods for the reduction of endotoxins in a plasmid preparation using a carbohydrate non-ionic detergent with silica chromatography.

BACKGROUND

- Top of Page


OF THE INVENTION

The invention relates to a method for reducing endotoxin levels or removing endotoxins from biological material. The method according to the invention enables, for example, high-purity plasmid DNA to be obtained from natural sources, in particular bacterial sources.

The demand for rapid and efficient methods for obtaining high-purity plasmid DNA from biological sources is constantly increasing owing to the increasing importance of recombinant DNA for exogenous expression or therapeutic applications. In particular, the demand for purification methods that can also be carried out on a larger scale is also increasing.

Virtually all known methods for the purification of, in particular, relatively large amounts of plasmid DNA include a chromatographic purification step. The efficiency of this step generally also determines the efficiency and effectiveness of the purification.

Plasmids are epigenomic circular DNA molecules having a length of between 4 and 20 kB, which corresponds to a molecular weight of between 2.6×106 and 13.2×106 daltons. Even in their compact form (supercoiled), plasmid DNA molecules normally have a size of several hundred nanometers. Owing to these dimensions, they are larger than the pores of most chromatography materials. This in turn causes, inter alia, the poor binding capacities of the separating materials generally used for plasmid DNA.

A further problem in the purification of plasmid DNA is caused by the impurities from which the plasmid DNA is to be separated. These are firstly genomic DNA and RNA. Exactly like plasmid DNA, these molecules have a strongly anionic character and thus a very similar binding behavior to separating materials.

The removal of endotoxins is at least as complex. Endotoxins are lipopolysaccharides (LPSs) which are located on the outer membrane of Gram-negative host cells, such as, for example, Escherichia coli. During lysis of the cells, LPSs and other membrane constituents are dissolved out, in addition to the plasmid DNA. Endotoxins are present in cells in a number of approximately 3.5×106 copies per cell (Escherichia Coli and Salmonella typhimurium, Cell. and Mol. Biology, J. L. Ingraham et al. Eds., 1987, ASM) and thus exceed the number of plasmid DNA molecules by a factor of more than 104. For this reason and the fact that lipopolysaccharides are high molecular polyanions which tend to co-migrate with DNA on chromatographic matrices, plasmid DNA obtained from Gram-negative host cells often contains large amounts of endotoxins. These substances result in a number of undesired side reactions in further usage of the plasmid DNA (Morrison and Ryan, 1987, Ann. Rev. Med. 38, 417-432; Boyle et al. 1998, DNA and Cell Biology, 17, 343-348). If it is intended to employ the plasmid DNA for, for example, gene therapy, it is of extreme importance that, for example, inflammatory or necrotic side reactions due to the impurities do not occur. There is therefore a great demand for effective methods for reducing endotoxin concentrations to the lowest possible levels.

Known methods for reducing endotoxin levels are based on a plurality of purification steps, frequently using silica supports, glass powder or hydroxyapatite, and on reverse-phase, affinity, size-exclusion and/or anion-exchange chromatography, and are lengthy and tedious.

Firstly, the host cells are digested by known methods, such as, for example, alkaline lysis. However, other lysis methods, such as, for example, the use of high pressure, boiling lysis, the use of detergents or digestion by lysozyme, are also known. The resultant alkaline lysate is neutralized and then centrifuged or filtered to remove any precipitate.

The plasmid DNA in the medium obtained in this way, a “cleared lysate”, is principally contaminated by relatively small cell constituents, chemicals from the preceding treatment steps, RNA, proteins and endotoxins. The removal of these impurities usually requires a plurality of subsequent purification steps. Purification by means of anion-exchange chromatography has proven particularly advantageous.

However, the dynamic binding capacity of most anion exchangers for plasmid DNA is only about 0.4 mg/ml of separating material. The reason for this low value is that the functional groups are bonded to the support directly or via short spacers and consequently are only available to a limited extent for interactions with the large plasmid DNA molecules.

Another disadvantage of anion-exchange purification is that high salt is required to elute DNA from anion-exchange matrices, which requires additional steps to remove the salt for utilization of the DNA in downstream applications.

A further disadvantage of conventional anion-exchange chromatography is that a considerable amount of endotoxins is bound together with the plasmid DNA and cannot be separated off in this way. Plasmid DNA with endotoxin proportions of greater than 5000 EU/mg of plasmid DNA is often obtained. In order to reduce the endotoxin levels, further purification steps, such as, for example, chromatographic steps (gel filtration) or precipitation with isopropanol, ammonium acetate or polyethylene glycol, are therefore necessary. Purification methods which combine chromatographic methods, such as, for example, anion-exchange chromatography, and additional endotoxin removal steps, enable plasmid DNA having an endotoxin content of less than 50 EU/mg of plasmid DNA to be obtained. However, methods of this type are usually complex, time-consuming and of only limited suitability for the purification of relatively large amounts of DNA.

A method to reduce the levels of bacterial lipopolysaccharides in plasmid DNA by treatment with the detergent n-octyl-β-D-thioglucopyranoside and polymyxin-B chromatography has been described (I. P. Wicks, et al., Human Gene Therapy, 6, 317-323 (1995)).

U.S. Pat. No. 6,617,443 describes a process using a salt-free detergent solution and subsequent anion exchange chromatography to remove endotoxins from a nucleic acid preparation.

U.S. Pat. No. 5,747,663 describes a process for the removal of endotoxins from nucleic acids by pre-incubation of the nucleic acid with an aqueous salt solution and detergents, followed by treatment with anion exchange materials.

U.S. Pat. No. 5,990,301 describes a process for the purification of nucleic acids for use in gene therapy that includes treating a lysate with a non-ionic detergent followed by anion exchange.

U.S. Pat. No. 6,297,371 describes a process for the purification of nucleic acids for use in gene therapy that includes treating a lysate with a non-ionic detergent followed by anion exchange.

U.S. Pat. No. 6,194,562 describe a process for the removal of endotoxins from nucleic acids using silica-based materials, such as silica gel particles, magnetic silica particles, or diatomaceous earth.

U.S. Pat. No. 6,428,703 describes a process for purifying biological macromolecules from starting materials and for the removal of endotoxins through the use of anion exchange chromatography utilizing a polyethylene glycol non-ionic surfactant.

U.S. Pat. No. 6,011,148 describes a process for producing highly purified compositions of nucleic acids with low endotoxin levels by using tangential flow ultrafiltration.

US 2003/0204077 describes a process for the isolation of RNA from eukaryotic cells involving the use of an extraction reagent which may contain one of several non-ionic detergents.

SUMMARY

- Top of Page


OF THE INVENTION

A need however remains for an improved method for the purification of nucleic acids, in particular plasmid DNA, which provides plasmid DNA having an endotoxin content of less than about 100 EU/mg plasmid DNA. A special need exists for such a method to provide the purification of plasmid DNA with reduced endotoxin levels that is simpler and faster than existing methods. To address the continuing need for purified plasmid DNA, methods to achieve that end are herein reported. The present invention provides methods for the reduction of endotoxin levels in nucleic acid preparations using a carbohydrate non-ionic detergent in combination with silica chromatography to meet this need.

Among its several embodiments, the present invention provides a method for reducing endotoxin levels in a nucleic acid solution. The method comprises contacting the nucleic acid solution with a carbohydrate non-ionic detergent selected from the group consisting of an alkyl thiomaltoside and a sucrose monoalkyl ester. The method further comprises contacting the resultant solution with an inorganic binding matrix and washing the resultant binding matrix to obtain a nucleic acid composition having an endotoxin content of less that 100 EU/mg.

In another embodiment, the present invention further provides a kit for reducing endotoxin levels in a nucleic acid solution. The kit comprises a binding solution, a carbohydrate non-ionic detergent, and an inorganic binding matrix.

Further scope of the applicability of the present invention will become apparent from the detailed description provided below. However, it should be understood that the following detailed description and examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

DETAILED DESCRIPTION

- Top of Page


OF THE INVENTION

The following detailed description is provided to aid those skilled in the art in practicing the present invention. Even so, this detailed description should not be construed to unduly limit the present invention as modifications and variations in the embodiments discussed herein can be made by those of ordinary skill in the art without departing from the spirit or scope of the present inventive discovery.

The contents of each of the references cited herein, including the contents of the references cited within these primary references, are herein incorporated by reference in their entirety.




← Previous       Next → Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Process for the reduction of endotoxins in a plasmid preparation using a carbohydrate non-ionic detergent with silica chromatography patent application.

###


Browse recent Sigma-aldrich Company patents

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Process for the reduction of endotoxins in a plasmid preparation using a carbohydrate non-ionic detergent with silica chromatography or other areas of interest.
###


Previous Patent Application:
Rnai modulation of rsv and therapeutic uses thereof
Next Patent Application:
Organic compounds
Industry Class:
Organic compounds -- part of the class 532-570 series
Thank you for viewing the Process for the reduction of endotoxins in a plasmid preparation using a carbohydrate non-ionic detergent with silica chromatography patent info.
- - -

Results in 0.07588 seconds


Other interesting Freshpatents.com categories:
Amazon , Microsoft , Boeing , IBM , Facebook

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.1756

66.232.115.224
Browse patents:
Next
Prev

stats Patent Info
Application #
US 20090240044 A1
Publish Date
09/24/2009
Document #
File Date
12/31/1969
USPTO Class
Other USPTO Classes
International Class
/
Drawings
0


Non-ionic Plasmid

Follow us on Twitter
twitter icon@FreshPatents

Sigma-aldrich Company


Browse recent Sigma-aldrich Company patents



Organic Compounds -- Part Of The Class 532-570 Series   Azo Compounds Containing Formaldehyde Reaction Product As The Coupling Component   Carbohydrates Or Derivatives   Nitrogen Containing   Dna Or Rna Fragments Or Modified Forms Thereof (e.g., Genes, Etc.)   Separation Or Purification Of Polynucleotides Or Oligonucleotides  

Browse patents:
Next
Prev
20090924|20090240044|process for the reduction of endotoxins in a plasmid preparation using a carbohydrate non-ionic detergent with silica chromatography|The present invention provides methods for the reduction of endotoxins in a plasmid preparation using a carbohydrate non-ionic detergent with silica chromatography. |Sigma-aldrich-Company