Free Services  

  • MONITOR KEYWORDS
  • Enter keywords & we'll notify you when a new patent matches your request (weekly update).

  • ORGANIZER
  • Save & organize patents so you can view them later.

  • ARCHIVE
  • View the last few months of your Keyword emails.

  • COMPANY DIRECTORY
  • Patents sorted by company.

Follow us on Twitter
twitter icon@FreshPatents

Browse patents:
NextPrevious

Dedifferentiated, programmable stem cells of monocytic origin, and their production and use




Title: Dedifferentiated, programmable stem cells of monocytic origin, and their production and use.
Abstract: The invention relates to the production of adult dedifferentiated, programmable stem cells from human monocytes by cultivation of monocytes in a culture medium which contains M-CSF and IL-3. The invention further relates to pharmaceutical preparations, which contain the dedifferentiated, programmable stem cells and the use of these stem cells for the production of target cells and target tissue. ...

USPTO Applicaton #: #20090233363
Inventors: Bernd Karl Friedrich Kremer, Fred Fandrich, Maren Nee Schulze Ruhnke


The Patent Description & Claims data below is from USPTO Patent Application 20090233363, Dedifferentiated, programmable stem cells of monocytic origin, and their production and use.

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §120 as a continuation-in-part application of U.S. application Ser. No. 10/372,657, filed Feb. 25, 2003 which claims the benefit under 35 U.S.C. §119 of German Patent Application No. 102 14 095.2, filed Mar. 28, 2002. This application also claims the benefit under 35 U.S.C. §365 of International Application No. PCT/EP03/02121 filed Feb. 25, 2003, which claims the benefit of German Patent Application Number 102 14 095.2, filed Mar. 28, 2002. The disclosures of these applications are hereby incorporated by reference in their entirety.

BACKGROUND

- Top of Page


OF THE INVENTION

The term “stem cells” designates cells which (a) have the capability of self-renewal and (b) the capability to form at least one and often a number of specialized cell types due to their asymmetrical division capability (cf. Donovan, P. J., Gearhart, J., Nature 414: 92-97 (2001)). The term “pluripotent” designates stem cells, which can essentially be differentiated into all possible cell types of the human and animal body. Such stem cells have hitherto only been obtainable from embryonic tissue or embryonic carcinoma (testicular tumor) (cf. Donovan, P. J., Gearhart, J., loc cit). The use of embryonic stem cells has been the subject of extensive public discussion, especially in Germany, and is regarded as extremely problematical. Besides the ethical and legal problems connected with embryonic stem cells, the therapeutic use of such cells also comes up against difficulties. By nature, embryonic stem cells are obtained from donor organisms, which are heterologous vis-à-vis the potential recipients of differentiated cells or tissue (hereafter referred to as somatic target cells or target tissue) developed from these cells. It is therefore to be expected, that such target cells will trigger an immediate immunological response in the potential recipients in the form of rejection.

Stem cells can be also isolated from different tissues of adult, i.e., from differentiated individuals. Such stem cells are referred to in the state of the art as “multipotent adult stem cells”. In the body they play a role in tissue regeneration and homeostasis. The essential difference between embryonic pluripotent stem cells and adult multipotent stem cells lies in the number of differentiated tissues, which can be obtained from the respective cells. Presumably, this is due to the fact that pluripotent stem cells come from sperm cells, or from cells which can produce sperm, while adult multipotent stem cells come from the body or soma of adult individuals (cf. Donovan, P. J., Gearhart, J. loc cit, Page 94), which are not capable of sperm production.

The actual problems relating to the obtaining and use of adult stem cells however lie in the rarity of these cells. Thus, in the bone marrow, stem cells are present only in the ratio of 1:10,000, in the peripheral blood of 1:250,000 and in the liver in the ratio of 1:100,000. Obtaining such stem cells is therefore very expensive and stressful for the patient. In addition the generation of large cell quantities, as required for clinical therapy, has scarcely been possible hitherto at reasonable expense.

This is contrasted by a constantly increasing need for possibilities for treatment of destroyed tissue in the form of “tissue engineering” or as cell therapy, within the framework of which skin-, muscle-, heart muscle-, liver-, islet-, nerve-, neurone-, bone-, cartilage-, endothelium- and fat cells etc. are to be replaced.

In this connection, the foreseeable development of the age and disease profile of the population in the western world is decisive, leading to the expectation of a drastic turning point in the next 10 years in the health and care sector of the western European population, including the USA and Canada. In the Federal Republic of Germany alone, the demographic development suggests a 21%-growth in population in the 45-64 year-old age group by 2015, and a 26%-growth in the over 65 age group. This is bound to result in a change in patient structure and in the spectrum of diseases requiring treatment. Predictably, diseases of the cardio-circulatory system (high pressure, myocardial infarction), vascular diseases due to arteriosclerosis and metabolic diseases, metabolic diseases such an diabetes mellitus, diseases at liver metabolism, kidney diseases as well as diseases of the skeletal system caused by age-related degeneration, and degenerative diseases of the cerebrum caused by neuronal and glial cell losses will increase and require innovative treatment concepts.

These facts explain the immense national and international research and development efforts by the specialists involved, to obtain stem cells which can be programmed into differentiated cells typical of tissue (liver, bone, cartilage, muscle, skin etc.).

The problem underlying the invention therefore resides in making available adult stem cells, the generation of which gives rise to no ethical and/or legal problems, which are rapidly available for the planned therapeutic use in the quantities required for this, and at justifiable production costs, and which, when used as “cellular therapeutics” give rise to no side effects—or none worth mentioning—in terms of cellular rejection and induction of tumors, particularly malignant tumors, in the patient in question.

SUMMARY

- Top of Page


OF THE INVENTION

The present invention provides a method for producing human dedifferentiated programmable stem cells using M-CSF and IL-3.

The present invention includes and provides a process for the production of dedifferentiated, programmable stem cells of human monocytic origin, comprising (a) isolating the monocytes from human blood; (b) propagating the monocytes in a culture medium, which contains cellular growth factor M-CSF; (c) simultaneously cultivating the monocytes with or subsequently to step (b) in a culture medium comprising IL-3; and (d) obtaining human adult dedifferentiated programmable stem cells by separating from culture medium.

The present invention includes and provides a process for the production of dedifferentiated, programmable stem cells of human monocytic origin, comprising (a) providing human monocytes; (b) propagating the monocytes in a culture medium, which contains cellular growth factor M-CSF; (c) simultaneously cultivating the monocytes with or subsequently to step (b) in a culture medium comprising IL-3; and (d) obtaining human adult dedifferentiated programmable stem cells by separating from culture medium.

The present invention includes and provides a dedifferentiated, programmable stem cell of human monocytic origin, wherein the cell is characterized by exhibiting a CD14 antigen and an antigen selected from the group consisting of CD90, CD117, CD123 and CD135.

The present invention includes and provides a dedifferentiated, programmable stem cell of human monocytic origin, wherein the cell is characterized by exhibiting a CD14 antigen and a CD123 antigen.

The present invention includes and provides a dedifferentiated, programmable stem cell of human monocytic origin, wherein the cell is characterized by exhibiting a CD14 antigen and a CD135 antigen.

The present invention includes and provides a dedifferentiated, programmable stem cell of human monocytic origin, wherein the cell is characterized by exhibiting a CD14 antigen, a CD123 antigen and a CD135 antigen.

The present invention includes and provides a dedifferentiated, programmable stem cell of human monocytic origin manufactured by a process comprising (a) isolating monocytes from human blood; (b) propagating monocytes in a culture medium, which contains cellular growth factor M-CSF; (c) simultaneously cultivating monocytes with or subsequently to step (b) in a culture medium comprising IL-3; and (d) obtaining human adult dedifferentiated programmable stem cells by separating from culture medium.

The present invention includes and provides a pharmaceutical composition comprising a dedifferentiated, programmable stern cell of human monocytic origin, wherein the cell is characterized by exhibiting a CD14 antigen and an antigen selected from the group consisting of CD90, CD117, CD123 and CD135.

The present invention includes and provides a pharmaceutical composition comprising a dedifferentiated, programmable stem cell of human monocytic origin, wherein the cell is characterized by exhibiting a CD14 antigen and a CD135 antigen.

The present invention includes and provides a pharmaceutical composition comprising a dedifferentiated, programmable stem cell of human monocytic origin, wherein the cell is characterized by exhibiting a CD14 antigen and a CD123 antigen.

The present invention includes and provides a pharmaceutical composition comprising a dedifferentiated, programmable stem cell of human monocytic origin, wherein the cell is characterized by exhibiting a CD14 antigen, a CD123 antigen and a CD135 antigen.

The present invention includes and provides a method of producing target cells from dedifferentiated, programmable stem cells of human monocytic origin comprising (a) obtaining desired target cells from a target tissue; (b) incubating the desired target cells in a suitable culture medium; and (c) providing supernatent from the culture medium after incubation with the desired target cells to dedifferentiated, programmable stem cells of human monocytic origin that are characterized by exhibiting a CD14 antigen and an antigen selected from the group consisting of CD90, CD117, CD123 and CD135 to differentiate said stem cells of human monocytic origin into target cells.

The present invention includes and provides a method of producing target cells from dedifferentiated, programmable stem cells of human monocytic origin comprising (a) obtaining desired target cells from a target tissue; (b) incubating the desired target cells in a suitable culture medium; and (c) providing supernatent from the culture medium after incubation with the desired target cells to dedifferentiated, programmable stem cells of human monocytic origin that are characterized by exhibiting a CD14 and a CD135 antigen to differentiate said stem cells of human monocytic origin into target cells.

The present invention includes and provides a method of producing target cells from dedifferentiated, programmable stem cells of human monocytic origin comprising (a) obtaining desired target cells from a target tissue; (b) incubating the desired target cells in a suitable culture medium; and (c) providing supernatent from the culture medium after incubation with the desired target cells to dedifferentiated, programmable stem cells of human monocytic origin that are characterized by exhibiting a CD14 antigen and a CD123 antigen to differentiate said stem cells of human monocytic origin into target cells.

The present invention includes and provides a method of producing target cells from dedifferentiated, programmable stem cells of human monocytic origin comprising (a) obtaining desired target cells from a target tissue; (b) incubating the desired target cells in a suitable culture medium; and (c) providing supernatent from the culture medium after incubation with the desired target cells to dedifferentiated, programmable stem cells of human monocytic origin that are characterized by exhibiting a CD14 antigen, a CD123 antigen and a CD135 antigen to differentiate said stem cells of human monocytic origin into target cells.

According to the present invention, the methods of producing target cells from dedifferentiated, programmable stem cells of human monocytic origin thus start with the isolation of desired target cells (step a), i.e. the isolation of differentiated cells of the cell type which is to be produced using the dedifferentiated, programmable stem cells. The differentiated target cells can be incubated in a cell culture medium (step b). Supernatent from the cell culture medium of the differentiated target cells can be used to differentiate stem cells of human monocytic origin into target cells (c).

The present invention includes and provides a dedifferentiated, programmable stem cell of human monocytic origin, wherein the cell is characterized by the membrane associated monocyte-specific surface antigen CD14 and at least one pluripotency marker selected from the group consisting of CD117, CD123 and CD135.

The present invention includes and provides a dedifferentiated, programmable stem cell preparation comprising a dedifferentiated, programmable stem cell of human monocytic origin of the present invention in a suitable medium.

The present invention includes and provides a method for treating liver cirrhosis using a pharmaceutical composition comprising dedifferentiated programmable stem cells of the present invention.

The present invention includes and provides a method of making a pharmaceutical composition for treating liver cirrhosis by preparing a composition comprising dedifferentiated programmable stem cells of the present invention.

The present invention includes and provides a method for treating pancreatic insufficiency using a pharmaceutical composition comprising dedifferentiated programmable stem cells of the present invention.

The present invention includes and provides a method of making a pharmaceutical composition for treating pancreatic insufficiency by preparing a composition comprising dedifferentiated programmable stem cells of the present invention.

The present invention includes and provides a method for treating acute or chronic kidney failure using a pharmaceutical composition comprising dedifferentiated programmable stem cells of the present invention.

The present invention includes and provides a method of making a pharmaceutical composition for treating acute or chronic kidney failure by preparing a composition comprising dedifferentiated programmable stem cells of the present invention.




← Previous       Next → Advertise on FreshPatents.com - Rates & Info


You can also Monitor Keywords and Search for tracking patents relating to this Dedifferentiated, programmable stem cells of monocytic origin, and their production and use patent application.
###
monitor keywords

Keyword Monitor How KEYWORD MONITOR works... a FREE service from FreshPatents
1. Sign up (takes 30 seconds). 2. Fill in the keywords to be monitored.
3. Each week you receive an email with patent applications related to your keywords.  
Start now! - Receive info on patent apps like Dedifferentiated, programmable stem cells of monocytic origin, and their production and use or other areas of interest.
###


Previous Patent Application:
Porous scaffold, method of producing the same and method of using the porous scaffold
Next Patent Application:
Method to engineer mapk signaling responses using synthetic scaffold interactions and scaffold-mediated feedback loops
Industry Class:
Chemistry: molecular biology and microbiology
Thank you for viewing the Dedifferentiated, programmable stem cells of monocytic origin, and their production and use patent info.
- - -

Results in 0.07039 seconds


Other interesting Freshpatents.com categories:
Novartis , Apple , Philips , Toyota ,

###

Data source: patent applications published in the public domain by the United States Patent and Trademark Office (USPTO). Information published here is for research/educational purposes only. FreshPatents is not affiliated with the USPTO, assignee companies, inventors, law firms or other assignees. Patent applications, documents and images may contain trademarks of the respective companies/authors. FreshPatents is not responsible for the accuracy, validity or otherwise contents of these public document patent application filings. When possible a complete PDF is provided, however, in some cases the presented document/images is an abstract or sampling of the full patent application for display purposes. FreshPatents.com Terms/Support
-g2-0.0034

66.232.115.224
Next →
← Previous

stats Patent Info
Application #
US 20090233363 A1
Publish Date
09/17/2009
Document #
File Date
12/31/1969
USPTO Class
Other USPTO Classes
International Class
/
Drawings
0


Monocyte

Follow us on Twitter
twitter icon@FreshPatents



Chemistry: Molecular Biology And Microbiology   Animal Cell, Per Se (e.g., Cell Lines, Etc.); Composition Thereof; Process Of Propagating, Maintaining Or Preserving An Animal Cell Or Composition Thereof; Process Of Isolating Or Separating An Animal Cell Or Composition Thereof; Process Of Preparing A Composition Containing An Animal Cell; Culture Media Therefore   Culture Medium, Per Se   Contains A Growth Factor Or Growth Regulator  

Browse patents:
Next →
← Previous
20090917|20090233363|dedifferentiated, programmable stem cells of monocytic origin, and their production and use|The invention relates to the production of adult dedifferentiated, programmable stem cells from human monocytes by cultivation of monocytes in a culture medium which contains M-CSF and IL-3. The invention further relates to pharmaceutical preparations, which contain the dedifferentiated, programmable stem cells and the use of these stem cells for |